THE HOT DARK MATTER MODEL: FURTHER INVESTIGATION
DOI:
https://doi.org/10.18524/1810-4215.2020.33.216299Ключові слова:
dark matter, galaxies, kinematics and dynamics, dwarf, globular clusters, generalАнотація
e outer region with the dominant hot
dark matter (the parabolic orbit of the test particle).
It was assumed that the hot dark matter consists of
hypothetical Planck neutrinos arising in the decay
of the protons at the Planck scale. Galaxies formed
from the baryonic matter, and the hot dark matter
appears in the galaxies later. The rotation curves
of the galaxies were studied in the model, including
Milky Way, M33, NGC 2366 and IC 2574. In the
present paper, the hot dark matter model is further
investigated, with the application to M31, the system
of M31 and the Milky Way, the globular clusters
NGC 2419 and MGC1, the dwarf spheroidal galaxy
Sculptor, ultra-massive quiescent galaxies from the
COSMOS and UDS fields. The baryonic matter mass
of M31 was estimated from the rotation curves, with
the average value 1.6 × 10 11 m ? . The gravitational
interaction of the Milky Way and M31 is considered.
In the hot dark matter model, the dynamical masses
of the Milky Way and M31 are twice their baryonic
matter masses that gives the radial velocity of M31
toward the Milky Way, 106 km s −1 . The hot dark
matter mass in the globular clusters NGC 2419 and
MGC1 is estimated. The value is small compared
to the stellar mass in both the clusters. The hot
dark matter mass within the half-light radius of
the dwarf spheroidal galaxy Sculptor is estimated,
0.5 × 10 6 m ? . The sum of the stellar and hot dark
matter mass within the half-light radius is consistent
with the dynamical mass within the half-light radius
of the Sculptor derived from the kinematics of the
metal rich stars. The instability of the baryonic
matter due to the influence of the hot dark matter
and some perturbations flattens the velocity profile
of the metal poor stars which is unsuitable to derive
the dynamical mass. The evolution of ultra-massive
quiescent galaxies from the COSMOS and UDS fields
is considered. The dynamical to stellar mass relation
is doubling during the evolution from z = 2 to 0 that
can be explained by the absence of dark matter at
z = 2 and the presence of the hot dark matter at
z = 0.
Посилання
Ade P.A.R., Aghanim N., Arnaud M. et al.: 2016, A&A, 594, A13
Battaglia G., Helmi A., Tolstoy E., Irwin M., Hill V.,
Jablonka P.: 2008, ApJ, 681, L13
Battaner E., Florido E.: 2000, Fund. Cosmic Phys., 21, 1
Bertone G., Tait T.M.P.: 2018, Nature, 562, 51
Brinks E., Burton W.B.: 1984, A&A, 141, 195
Bowman J.D., Rogers A.E.E., Monsalve R.A., Mozdzen T.J., Mahesh N.: 2018, Nature, 555, 67
Casey C.M., Zavala J.A., Araven M. et al.: 2019, ApJ, 887, 55
Chapman S.C., Ibata R., Lewis G.F. et al.: 2006, ApJ, 653, 255
Chemin L., Carignan C., Foster T.: 2009, ApJ, 705, 1395
Collins M.L.M., Chapman S.C., Rich R.M. et al.: 2014, ApJ, 783, 7
Conroy C., Loeb A., Spergel D.N.: 2011, ApJ, 741, 72
Corbelli E., Lorenzoni S., Walterbos R., Braun R., Thilker D.: 2010, A&A, 511, A89
Demia´ nski M., Doroshkevich A.: 2017, preprint (arXiv:1701.03474)
Famaey B., McGuagh S.: 2012, Living Reviews in Relativity, 15, 10
Geehan J.J., Fardal M.A., Babul A., Guhathakurta P.: 2006, MNRAS, 366, 996
Genzel R., Förster Schreiber N.M., Ubler H. et al.:
, Nature, 543, 397
Hammer F., Yang Y., Arenou F. et al.: 2018, ApJ, 860, 76
Henderson A.P.: 1979, A&A, 75, 311
Ibata R., Chapman S., Ferguson A.M.N., Lewis G., Irwin M., Tanvir N.: 2005, ApJ, 634, 287
Ibata R., Nipoti C., Sollima A., Bellazzini M., Chapman S.C., Dalessandro E.: 2013, MNRAS, 428, 3648
Khokhlov D.L.: 2011a, Ap&SS, 333, 209
Khokhlov D.L.: 2011b, Ap&SS, 335, 577
Khokhlov D.L.: 2011c, Open Astron. J., 4 SI 1, 151
Khokhlov D.L.: 2013, Ap&SS, 343, 787
Khokhlov D.L.: 2014, Phys. Lett. B, 729, 1
Khokhlov D.L.: 2015, Ap&SS, 360, 27
Khokhlov D.L.: 2017, Int. J. Mod. Phys. Appl., 4, 8
Khokhlov D.L.: 2018, Open Astronomy, 27, 294
Kroupa P.: 2012, PASA, 29, 395
Kroupa P.: 2015, Can. J. Phys., 93, 169
Landau L., Lifshitz Ye.: 1960, Mechanics, Pergamon
Press, Oxford
Lang P., Förster Schreiber N.M., Genzel R. et al.: 2017, ApJ, 840, 92
Liu J., Chen X., Ji X.: 2017, Nat. Phys., 13, 212
López-Corredoira M.: 2017, Found. Phys., 47, 711
McConnachie A.W., Irwin M.J., Ferguson R.A., Ibata
R.A., Lewis G.F., Tanvir N.: 2005, MNRAS, 356, 979
McConnachie A.W.: 2012, AJ, 144, 4
McGaugh S.S.: 2018, Phys. Rev. Lett., 121, 081305
Marrodán Undagoitia T., Rauch L.: 2016, J. Phys. G:Nucl. Part. Phys., 43, 013001
Mashchenko S., Sills A.: 2005a, ApJ, 619, 243
Mashchenko S., Sills A.: 2005b, ApJ, 619, 258
Newton K., Emerson D.T.: 1977, MNRAS, 181, 573
Ostriker J.P., Steinhardt P.J.: 1995, Nature, 377, 600
Peebles P.J.E.: 1984, ApJ, 277, 470
Read J.I.: 2014, J. Phys. G: Nucl. Part. Phys., 41, 063101
Reyes R., Mandelbaum R., Seljak U. et al.: 2010, Nature, 464, 256
Seigar M.S., Barth A.J., Bullock J.S.: 2008, MNRAS, 389, 1911
Stockmann M., Toft S., Gallazzi A. et al.: 2020, ApJ, 888, 4
Tamm A., Tempel E., Tenjes P., Tihhonova O., Tuvikene T.: 2012, A&A, 546, A4
Tanaka M., Valentino F., Toft S. et al.: 2019, ApJL, 885, L34
Trimble V.: 1987, ARA&A, 25, 425
van der Marel R.P., Fardal M., Besla G. et al.: 2012, ApJ, 753, 8
Veljanoski J., Mackey A.D., Ferguson A.M.N. et al.:
, MNRAS, 442, 2929
Walker M.: 2013, In: Oswalt T.D., Gilmore G. (eds) Planets, Stars and Stellar Systems, Springer, Dordrecht
Walterbos R., Kennicutt R.: 1988, A&A, 198, 61
Weber M., de Boer W.: 2010, A&A, 509, 25
Weinberg D.H., Bullock J.S., Governato F., de Naray R.K., Peter A.H.G.: 2015, Proc. Nat. Acad. Sci., 112, 12249
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Odessa Astronomical Publications
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Відповідно Закону України про авторське право і суміжні права N 3792-XII від 23 грудня 1993 року