THE HOT DARK MATTER MODEL: FURTHER INVESTIGATION

Автор(и)

  • D. L. Khokhlov Sumy State University, Ukraine

DOI:

https://doi.org/10.18524/1810-4215.2020.33.216299

Ключові слова:

dark matter, galaxies, kinematics and dynamics, dwarf, globular clusters, general

Анотація

e outer region with the dominant hot
dark matter (the parabolic orbit of the test particle).
It was assumed that the hot dark matter consists of
hypothetical Planck neutrinos arising in the decay
of the protons at the Planck scale. Galaxies formed
from the baryonic matter, and the hot dark matter
appears in the galaxies later. The rotation curves
of the galaxies were studied in the model, including
Milky Way, M33, NGC 2366 and IC 2574. In the
present paper, the hot dark matter model is further
investigated, with the application to M31, the system
of M31 and the Milky Way, the globular clusters
NGC 2419 and MGC1, the dwarf spheroidal galaxy
Sculptor, ultra-massive quiescent galaxies from the
COSMOS and UDS fields. The baryonic matter mass
of M31 was estimated from the rotation curves, with
the average value 1.6 × 10 11 m ? . The gravitational
interaction of the Milky Way and M31 is considered.
In the hot dark matter model, the dynamical masses
of the Milky Way and M31 are twice their baryonic
matter masses that gives the radial velocity of M31
toward the Milky Way, 106 km s −1 . The hot dark
matter mass in the globular clusters NGC 2419 and
MGC1 is estimated. The value is small compared
to the stellar mass in both the clusters. The hot
dark matter mass within the half-light radius of
the dwarf spheroidal galaxy Sculptor is estimated,
0.5 × 10 6 m ? . The sum of the stellar and hot dark
matter mass within the half-light radius is consistent
with the dynamical mass within the half-light radius
of the Sculptor derived from the kinematics of the
metal rich stars. The instability of the baryonic
matter due to the influence of the hot dark matter
and some perturbations flattens the velocity profile
of the metal poor stars which is unsuitable to derive
the dynamical mass. The evolution of ultra-massive
quiescent galaxies from the COSMOS and UDS fields
is considered. The dynamical to stellar mass relation
is doubling during the evolution from z = 2 to 0 that
can be explained by the absence of dark matter at
z = 2 and the presence of the hot dark matter at
z = 0.

Посилання

Ade P.A.R., Aghanim N., Arnaud M. et al.: 2016, A&A, 594, A13

Battaglia G., Helmi A., Tolstoy E., Irwin M., Hill V.,

Jablonka P.: 2008, ApJ, 681, L13

Battaner E., Florido E.: 2000, Fund. Cosmic Phys., 21, 1

Bertone G., Tait T.M.P.: 2018, Nature, 562, 51

Brinks E., Burton W.B.: 1984, A&A, 141, 195

Bowman J.D., Rogers A.E.E., Monsalve R.A., Mozdzen T.J., Mahesh N.: 2018, Nature, 555, 67

Casey C.M., Zavala J.A., Araven M. et al.: 2019, ApJ, 887, 55

Chapman S.C., Ibata R., Lewis G.F. et al.: 2006, ApJ, 653, 255

Chemin L., Carignan C., Foster T.: 2009, ApJ, 705, 1395

Collins M.L.M., Chapman S.C., Rich R.M. et al.: 2014, ApJ, 783, 7

Conroy C., Loeb A., Spergel D.N.: 2011, ApJ, 741, 72

Corbelli E., Lorenzoni S., Walterbos R., Braun R., Thilker D.: 2010, A&A, 511, A89

Demia´ nski M., Doroshkevich A.: 2017, preprint (arXiv:1701.03474)

Famaey B., McGuagh S.: 2012, Living Reviews in Relativity, 15, 10

Geehan J.J., Fardal M.A., Babul A., Guhathakurta P.: 2006, MNRAS, 366, 996

Genzel R., Förster Schreiber N.M., Ubler H. et al.:

, Nature, 543, 397

Hammer F., Yang Y., Arenou F. et al.: 2018, ApJ, 860, 76

Henderson A.P.: 1979, A&A, 75, 311

Ibata R., Chapman S., Ferguson A.M.N., Lewis G., Irwin M., Tanvir N.: 2005, ApJ, 634, 287

Ibata R., Nipoti C., Sollima A., Bellazzini M., Chapman S.C., Dalessandro E.: 2013, MNRAS, 428, 3648

Khokhlov D.L.: 2011a, Ap&SS, 333, 209

Khokhlov D.L.: 2011b, Ap&SS, 335, 577

Khokhlov D.L.: 2011c, Open Astron. J., 4 SI 1, 151

Khokhlov D.L.: 2013, Ap&SS, 343, 787

Khokhlov D.L.: 2014, Phys. Lett. B, 729, 1

Khokhlov D.L.: 2015, Ap&SS, 360, 27

Khokhlov D.L.: 2017, Int. J. Mod. Phys. Appl., 4, 8

Khokhlov D.L.: 2018, Open Astronomy, 27, 294

Kroupa P.: 2012, PASA, 29, 395

Kroupa P.: 2015, Can. J. Phys., 93, 169

Landau L., Lifshitz Ye.: 1960, Mechanics, Pergamon

Press, Oxford

Lang P., Förster Schreiber N.M., Genzel R. et al.: 2017, ApJ, 840, 92

Liu J., Chen X., Ji X.: 2017, Nat. Phys., 13, 212

López-Corredoira M.: 2017, Found. Phys., 47, 711

McConnachie A.W., Irwin M.J., Ferguson R.A., Ibata

R.A., Lewis G.F., Tanvir N.: 2005, MNRAS, 356, 979

McConnachie A.W.: 2012, AJ, 144, 4

McGaugh S.S.: 2018, Phys. Rev. Lett., 121, 081305

Marrodán Undagoitia T., Rauch L.: 2016, J. Phys. G:Nucl. Part. Phys., 43, 013001

Mashchenko S., Sills A.: 2005a, ApJ, 619, 243

Mashchenko S., Sills A.: 2005b, ApJ, 619, 258

Newton K., Emerson D.T.: 1977, MNRAS, 181, 573

Ostriker J.P., Steinhardt P.J.: 1995, Nature, 377, 600

Peebles P.J.E.: 1984, ApJ, 277, 470

Read J.I.: 2014, J. Phys. G: Nucl. Part. Phys., 41, 063101

Reyes R., Mandelbaum R., Seljak U. et al.: 2010, Nature, 464, 256

Seigar M.S., Barth A.J., Bullock J.S.: 2008, MNRAS, 389, 1911

Stockmann M., Toft S., Gallazzi A. et al.: 2020, ApJ, 888, 4

Tamm A., Tempel E., Tenjes P., Tihhonova O., Tuvikene T.: 2012, A&A, 546, A4

Tanaka M., Valentino F., Toft S. et al.: 2019, ApJL, 885, L34

Trimble V.: 1987, ARA&A, 25, 425

van der Marel R.P., Fardal M., Besla G. et al.: 2012, ApJ, 753, 8

Veljanoski J., Mackey A.D., Ferguson A.M.N. et al.:

, MNRAS, 442, 2929

Walker M.: 2013, In: Oswalt T.D., Gilmore G. (eds) Planets, Stars and Stellar Systems, Springer, Dordrecht

Walterbos R., Kennicutt R.: 1988, A&A, 198, 61

Weber M., de Boer W.: 2010, A&A, 509, 25

Weinberg D.H., Bullock J.S., Governato F., de Naray R.K., Peter A.H.G.: 2015, Proc. Nat. Acad. Sci., 112, 12249

##submission.downloads##

Опубліковано

2020-11-15

Номер

Розділ

Космологія, гравітація, фізика астрочастинок, фізика високих енергій