Fixed points of mapping of N-point gravitational lenses
DOI:
https://doi.org/10.18524/1810-4215.2018.31.144558Ключові слова:
gravitational lensing, lens mapping, fixed points, deflection function, complex analysisАнотація
In this paper, we study fixed points of N-point gravitational lenses. We use complex form of lens mapping to study fixed points. Complex form
has an advantage over coordinate one because we can describe N-point gravitational lens by system of two equation in coordinate form and we can describe it by one equation in complex form. We can easily transform the equation, which describe N-point gravitational lens, into polynomial equation that is convenient to use for our research. In our work, we present lens mapping as a linear combination of two mapping: complex analytical and identity mapping. Analytical mapping is specified by analytical function (deflection function). We studied necessary and sufficient conditions for the existence of deflection function and proved some theorems. Deflection function is analytical, rational, its zeroes are fixed points of lens mapping and their number is from 1 to N-1, poles of
deflection function are coordinates of point masses, all poles are simple, the residues at the poles are equal to the value of point masses. We used Gauss-Lucas theorem and proved that all fixed points of lens mapping are in the convex polygon. Vertices of the polygon consist of point masses. We proved theorem that can be used to find all fixed
point of lens mapping. On the basis of the above, we conclude that one-point gravitational lens has no fixed points, 2-point lens has only 1 fixed point, 3-point lens has 1 or 2 fixed points. Also we present expres-
sions to calculate fixed points in 2-point and 3-point gravitational lenses. We present some examples of parametrization of point masses and distribution of fixed points for this parametrization.
Посилання
Bliokh P.V., Minakov A.A.: 1989, Gravitational Lenses [in Russian]. (Naukova Dumka, Kiev), 240
Zakharov A.F.: 1997, Gravitacionnye linzy i mikrolinzy [in Russian]. (Janus-K, Moskow), 328
Schneider P., Ehlers J., Falco E.E.: 1999, Gravitational Lenses. (Springer-Verlag Berlin Heidelberg), 560
Kotvytskiy A.T., Bronza S.D., Vovk S.R.: 2016, Bulletin of Kharkiv Karazin National University “Physics”, 24, 55 (arXiv:1809.05392)
Bronza S.D., Kotvytskiy A.T.: 2017, Bulletin of Kharkiv Karazin National University “Physics”, 26, 6
Kotvytskiy A.T., Bronza S.D., Shablenko V.Yu.: 2017, Odessa Astronomical Publications, 30, 35
Kotvytskiy A.T., Bronza S.D.: 2016, Odessa Astronomical Publications, 29, 31
Witt H.J.: 1990, A&A, 236, 311
Praslov V.V.:2014, Polynomials[in Russian]. MCCME, 336
Davydov N.A.:1964, USSR Computational Mathematics and Mathematical Physics, 4,No.2, 257
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2018 Odessa Astronomical Publications
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Відповідно Закону України про авторське право і суміжні права N 3792-XII від 23 грудня 1993 року