58

Odessa Astronomical Publications, vol. 16 (2003)

3D HYDRODYNAMICAL MODELING OF CIRCULARIZATION
IN BINARY SYSTEMS

F. V. Sirotkin
Astronomical observatory, Odessa National University.

ABSTRACT. Results of Three-dimensional hy-
drodynamical modelling of circularization process
in binary systems at early stages of evolution are
presented. It is shown, that circularization for systems
in which the components fill their Roche lobe and are
on the Hayashi track, occurs for times about hundreds
of orbital periods. Thus, the binary systems such as
V382 Cyg reach on the Main Sequence, having already
a circular orbit.
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Introduction

Mechanisms of a rounding off of an orbit in the bi-
nary systems of the main sequence it well studied (Zahn
1970, 1975). The basic mechanism of a rounding off of
an orbit for the solar type stars (M < 1.5—1.6M) con-
taining an extended convective envelope, is the mecha-
nism turbulent of damping of energy of orbital motion
of stars in equilibrium tides. Equilibrium tidal humps
are directed not along the line of centers, and resulting
not along the line of the centers, because the viscos-
ity of substance in a stellar envelope is present. It
results in transfer of the moment of rotation and en-
ergy of rotation of a star to an orbit and back. FEf-
ficiency of this mechanism strongly depends on the
relation of radii of components to the size of orbital
separation (characteristic time of a rounding off of an

-8
orbit teipe ~ (R/A) ) (Zahn 1975). For massive stars

(M > 1.6My) with radiative envelope and convective
core the efficiency of a rounding off of an orbit is es-

sentially smaller because of low viscosity of substance
10.5

(Feire ~ (R/A)_ )(Zahn 1975).

Here we investigated the mechanism of rounding off
of an orbit at an early stage of evolution of components
of binary system, when the components on the Hayashi
track, when it is possible to believe, that the stellar
structure is fully convective.

SPH approximation

Here we shall give the review of the SPH method,
in volume necessary for understanding of the solution.
More detailed reviews are given in (Monaghan 1992,
Gingold Monaghan 1977).

The equations of hydrodynamics are represented in
three parts: the continuity equation

dp
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the equation of energy
dqQ P
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the equations of movtion.
dv 1= .
— =——VP+F 3
FrA s (3)

Here p is density, ¢ is velocity, P is gas pressure. The
system (1 - 3) is not complete, as the constraint equa-
tion supplementing system we have a used polytropic
equation of state

P=Kp',y=1+n"" (4)
where n is polytropic index, K entropic constant. Pres-
ence of fully convective envelope allows to use for poly-
tropic exponent the value 1.5.

Presence of viscosity, rotation and tidal deformation
demands to use more general equation a state

P =K(S)p" (5)

Where S entropy

P

— (v 1Vl (L
S=(=1"m(5) (6)
The equation (2) is approximate. Exact expression
should contain the terms responsible the radiation and
convective transfer of energy, allocation of energy in
nuclear reactions, etc. But the calculations discussed



Odessa Astronomical Publications, vol. 16 (2003)

29

in the subsequent section concern primarily the hydro-
dynamics of tidal dissipation and ignore such issues as
radiation transport and pressure thermonuclear of burn
or complications due to magnetic fields. Radiation pro-
cess can reasonably ignored because the diffusion time
scale are quite long compared with the dynamic time
scale for circularization in considered systems.

The core of SPH is an interpolation method which al-
lows any function to be expressed in terms of its values
at set of disordered points-the particles. Any quantity
can be determined as

(7 = [ Ay

Where integration is made on all volume, and W (r, h)
is kernel which satisfying conditions:

/W(r —r' h)dr' =

lim W(r —r',h) =8(r —1')

h—0

r—r' h)dr (7

(8)
9)

For numerical work, the integral (7) can be approxi-

mate by a summation.

N

A=)
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A(r3)
p(73)

W (|7 = 7il, h) (10)

The variable h in SPH has the same sense, as in finite-
difference methods the size of a grid. Using SPH we
can write the continuity equation such as

p(r) = §:7nz

(|7 = 7il, h) (11)

or

dp(7) _ <
dt _Z

i=1

mi(¥ = T;) - VW (|7 = 73], h) - (12)

In our work, we have used the equation (11), because
it equation guarantees conservation of mass The mo-
mentum equation

=—§j (P f)ku — 71, h)

J
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The first terms in the right part of expression (13) it
SPH approximation of a gradient of gas pressure. The
second term is a gravity action on a particle in a point
7; on the part of other particles. Here M (r;;) weight

of matter inside sphere with the center in 7; and radius

T‘ij:
v = o= 7| Py =
ii = |Te —T5| 5 Tij =
’I"ij
Tij Tij
M(ri;) = 47r/r2p(r)dr = 47rmi/r2W(r, h)dr
0 0

The third term in the right part of expression (13) is ac-
counts for viscosity forces. At numerical modelling, as
arule, an artificial viscosity is added. We have used the
following form of artificial viscosity (Monaghan ,1992):

N
Fyisei = Y _ijm; VW (rij, h)dr
=1

(14)

Pij
I;; =0 ;

{ M, = _apijcij + Bu;
h(t; — ;) - (75 — 1)

7 +e2h
pij = 0.5(pi + pj)

Mij = (15)

Cij = 05(01 + Cj)

Here ¢; is a sound speed at a point 7; , a, 3,€ are con-
stants selected by the decision of standard modelling
tasks (Monaghan ,1992). In our work o = 0.5, = 1.
The parameter € is put into equation (15) to prevents
singularities. This form of artificial viscosity has a
number of desirable features (Monaghan ,1992):

1. it is Galilean invariant
2. it vanishes for rigid body rotation
3. it conserves total linear and angular momenta.

SPH approximation of the equation of energy looks like
(Hernquist , 1993)

dK; v —
dt 2 pl

'MZ

=) - V;Wi;  (16)

IT;ymy; (7,
J:

The use of different kernels is the SPH is analogue of
the use of different difference schemes in finite differ-
ence methods. We use the Gaussian kernel, because
with this kernel, SPH equations has a simplest phys-
ical interpretation. In addition, SPH expressions re-
ceived with Gaussian kernel have higher accuracy in
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comparison with expressions based on splines (Mon-
aghan ,1992).

exp(—17)

13/213
Then, the system which we should solve can be written
down as:

W(r,h) = (17)

N
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Time step. Courant - Levy condition

In this, we applied to SPH more popular integra-
tion schemes - predictor-corrector scheme,the following
equations are used to obtain the field quantities at next
time step.

FL/2 = 0 4 % £0
F/2 = p0 4 % o0
p'/? = p(r'/?)
f1/2 = f(,,.l/2, p1/27 U1/27 )
ol/2 =0 4 %JM/Q

pl/2 =0 4 %Ulﬂ

(19)

Pl =2rt/2 — 40
vl = 21/2 0

Here, the superscripts refer to time step index, and f
the force per unit mass (acceleration). The time step
should be chosen to accommodate the Courant-Levy
condition, which, essentially, states that the maximum
rate of propagation of information numerically must
exceed the physical rate. In SPH, this translates to

s, 2
At =€ (20)

where c; is the sound speed. Because the viscosity is
present, it should be also be taken into account:

Aty = min( hi )

i \¢; + ac; + fmax; |

(21)
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Figure 1: The central density p. as a function time ¢ for
two dumped hydrodynamic sequences with equivalent
initial conditions and different dumping constant.

to ensure that the forces exerted on individual particles
are integrated correctly, the time step should also be

less then
L rhin1/2
Aty = mm(T)

3 i

(22)

here f; force per unit mass. So, a suitable time step
for the scheme is

At = CN min(Atl, At2) (23)

Model of a single polytropic star.

A smoothing length A

The decision of the primary goal demands to assign
the boundary conditions for system (18), besides this,
result of SPH approximation respects depends on size
of h. Calculation of model a single polytropic star tak-
ing place in a condition of hydrostatic balance and com-
parison of the received result with results the received
other methods allows to find a boundary conditions
and sizes of the h.

To construct a static model we follow the dumped
motion of a set of particles from some initial distribu-
tion of position until system comes to rest. Particles
were initially at rest, distributed in space either ac-
cording to random Gaussian distribution (see Fig.13,
Fig.14). For this case, it is possible to write down sys-
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tem (18) as (Gingold , Monaghan,1977) 0,06 T T T T T
N B
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j=1 0,04} 1
P=Kpl (24)
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d'l)_;; d’l?l _92 M(T”) R ()] \\‘
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dt dt ¢ Jz:; ¥ J 0,02} \-_:‘ \\_\\_\\\ |
Here there is no expression for polytropic temperature oo1b >~~~ T h i
because the it is constant for all star (Chandrasekhar '
,1950) 0.00 X . 1 e
K=N, G M* p>—* (25) 0 50 100 150 200 250 300
Here R radius and M is mass of the star. t
The approach to equilibrium for two initial configu- Figure 2: The eccentricity as a function time. Sold

ration with different dumping constant satisfying con-
ditions 0 < I' < 1 is illustrated in Fig. 1 for polytropic
index n = 1.5. The solid line represents the behavior
of central density p. as a function of the time ¢, in a se-
quence that commences with 1000 particles distributed
in space either according to random Gaussian distribu-
tion and I' = 0.98. The broken curve shows a sequence
with I' = 0.95.

Value of a spatially resolution h on each step of in-
tegration was from this condition:

on first step
R ho

d® = —

0 _
h T ON1/3 2

on s+ 1 step

RSTY =B 4 d¥ pf > py

¥ = b —d¥ pf < py
dS
2
Here p; is central density designed by others method
(for example SCF method give for polytropic index
n = 1.5 value of p; is 5.99071). For example, for a
star with M = My, R = Rs and N = 1000 value of a
spatially resolution h is 0.1105R. Final distribution
of particles is submitted in figures Fig. 15 and Fig. 16

ds+1 —

Initial conditions. Data structure

As a result of construction of polytrope model by a
method described in the previous paragraph we shall
define distribution of particles corresponding to hydro-
static. Transition to system of coordinates connected
with the center of weights of the binary system gives
for the first component

¥ =k, X7 + kO x 7, i = 1..N

=TT

line k,, = 1, dotted k, = 0.98, dashed &, = 0.99, dash-
dotted k, = 1.02

for the second component

T =k, x 7 — kO %7, i=N+1.2N
=7 7

where 77, is a vector of position of the center of weights
of system, k,, any factor. The Q is an angular velocity
corresponding to the Kepler’s third law which is not
obliged to be carried out for a case of not point mass.

For each star we use an equal number of parti-
cles and an equal polytropic index. For all models
M, = 27.2Mg(primary component), My = 19.25M,
(secondary component) , Ry = 9.45R5, R, =
8.5Rz, N = 2000 (1000 per star), n = 1.5, initial
orbital separation Ag = 26Rg (Fig.9 initial density
distribution for all models). We change the parameter
k., from model to model. Thus, we limit quantity of
varied parameters in view of complexity of the decision
of a problem completely.

Results

The factor k., varied in limits from 0.96 up to 1.04.
The time step made ~ 1% from an initial period. In
total it has been constructed ten models.

e For values 0.96 < k, < 0.995 as a result of a
transient mass transfer (Fig.11 Fig.12) there is an
increase of orbital separation. It is interesting to
note, that an interval of values k., at which it to
occur narrow. calculation were not made after the
moment of the termination of a mass transfer.

e For values 0.995 < k, < 1.016 there is a rounding
off of an orbit to value of final orbital separation
less initial.
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o For values k, > 1.016 there is a rounding off of
an orbit to value of final orbital separation more
initial. Its is difficult to determine precisely the
circularization time, because of huge amount of
computational time.

The analysis of time variability of orbital angular
moment in (Fig.8) shows, that, for all models on a
curve it is possible to allocate two basic stages. On
an initial stage there is practically linear decrease or
increase of the angular moment (Fig.5 dashed line) and
further there is a sharp change of character of behavior
of a curve. For values 0.96 < k, < 0.995 at which
there is mass transfer, it corresponds to the beginning
of an exchange in mass. Further, there are probably
two variants of evolution, for systems with &, < 0.995
there is a fast reduction of size of the angular moment.
For systems with k, > 0.995 the further change of
the orbital angular moment looks as fading periodic
fluctuations concerning a horizontal site (Fig.5 dotted
line). For all models, the full angular momentum is
strictly conserved.

In behavior of other characteristics of components of
binary system there are same features, as at behavior of
the orbital angular moment (Fig.5, Fig.4, Fig.3, Fig.7).

For any values of k, eccentricity decreases (Fig.2).
Time of a rounding off strongly depends on the relation
of radii of components to size of orbital separation
in periastron. On the other hand, the size of orbital se-

paration in periastron depends on k,, (from a condition
of a task). Dependence of circularization time on k,
can be approximated the following formula (Fig.6):

teire = exp(—1488.36 + 2896.74k,, — 1402.39k2) + 18.81
(26)
The obtained circularization times are insignificant
in comparison to circularization time for stars at Main
Sequence. It can serve as an argument for the bene-
fit of the assumption that circularization can occur at
early stages of evolution of closed binary stars, and as
a result they can get on the main sequence, having al-
ready circular orbits.
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Figure 3: The orbital separation as a function of time,
k, = 1. Orbital separation is given in terms of ini-
tial orbital separation, time is given in terms of initial
period
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Figure 4: The central density of primary component as

a function time, k, = 1.The central density is given in
terms of medium density of primary component.
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Figure 6: Circularization time as a function of k.
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Figure 7: The spin angular momentum of primary com-
ponent momentum as a function of time.
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Figure 9: ¢t = 0. Initial density distribution for all mod- Figure 11: The beginning of mass transferring ¢ = 108,
els. Distances are given in terms of orbital separation. k&, = 0.99
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Figure 10: The final density distribution for &k, = 1, Figure 12: The final density distribution for &, = 0.99,
t = 296. t=132.
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Figure 13: The initial density distribution correspond-
ing to initial distribution of particles(bottom Figure).

Density is given in terms of medium density.
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Figure 14: The initial distribution of a particles. Dis-

tances are given in terms of Rg.
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Figure 16: The final distribution of a particles. M =

Mg, R = Re, h = 0.1105R



