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ABSTRACT. In this paper, we present the results
of a study of the variability of the prototype polar
AM Her using one of the complementary mathematical
methods. Results of modeling of the auto-correlation
analysis of a 24117 second long Chandra observation
are discussed. The data have been binned to 1-second
intervals. The corresponding auto-correlation func-
tion has been modeled to take into account the non-
sinusoidal orbital variability of the object, onto which
a strong flickering is added. The model of a second or-
der trigonometric polynomial (orbital) + a first—order
Auto-Regressive process (”shot—noise” flickering) does
not seem to be not sufficient. A much better approxi-
mation can be achieved with a a four-parameter fit with
exponential decay times 7 = 174s and 7, = 9.8s. A
possible physical mechanism may be attributed to the
longer time of the flare of the plasma blob (”spaghetti”)
falling onto the white dwarf as compared to flares cor-
responding to smaller blobs resulting from magneto-
hydrodynamical instabilities. The results are com-
pared with numerical models.

Key words: Stars: binary: cataclysmic; stars: indi-
vidual: AM Her; data reduction.

1. Introduction

AM Herculis is the prototype of cataclysmic vari-
ables, in which the magnetic field of the white dwarf
is strong enough (10-300 MGs) to prevent creation of
the accretion disk and to keep the white dwarf in syn-

chronism with the orbital motion. Since the discov-
ery of circular and linear polarization of thes object
in 1976 (Tapia 1977) and creation of the ”standard”
model (Chanmugam and Wagner, 1977), the system
has attracted attention, and was a subject of multi-
wavelength studies from ground-based and orbital ob-
servatories. Recent reviews on these exciting objects
have been published by Warner (1995) Hellier (2002)
and Andronov (2001).

To study long-term variations of the light curve, the
photometric monitoring has started initially in the As-
tronomical Observatory of the Odessa State (now Na-
tional) University, and, from 1989, it has been contin-
ued in the Crimean Astrophysical Observatory polari-
metrically and photometrically in the UBVRI bands
(1.25m telescope AZT-11) and in the wide R band
(2.6m Shain Telescope). The highlights of this mon-
itoring have been recently summarized by Andronov
et al. (2002).

In 2000, we have organized an international cam-
paign of simultaneous UBVRI ground-based optical
and space (Chandra) X-Ray observations of AM Her.
Detailed results of this campaign obtained will be pre-
sented elsewhere.

In this paper, we present result of one of the method
of analysis, i.e. the modeling of the auto-correlation
function (ACF) of the Chandra data taking into ac-
count non-sinusoidal shape of the orbital variability
and the ”shot noise”.
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2. Auto-Correlation Analysis

Previous studies of the behaviour of Auto-
Correlation functions (ACF) have been usually made
using relatively short data segments of optical data in-
terrupted by measurements of background and com-
parison star. In this case, the subtraction of the sam-
ple mean value causes significant bias of the ACF (cf.
Sutherland et al. 1978). Andronov (1994) presented
a complete set of equations describing a bias in a gen-
eral case of trend described by linear combinations of
arbitrary basic functions and of arbitrary length. As-
suming a ”shot noise” model for rapid variability of
this object, one may approximate the signal in terms
of the first-order auto-regressive model (AR-1):

(1)

where zp and € are the signal and ”exciting noise”
at the k" time, respectively, and ¢ is the coefficient
related to the time of exponential decay 7 :

¢ = exp(=T/7), (2)

Here T is the time step between subsequent data (cf.
Jenkins and Watts, 1968).

For the signal consisting of a linear combination of
m independent processes:

m
Tp = E Tk
a=1

one may obtain an autocovariation function

Tp = Yxp_1 + €,

T=-T/Iny.

(3)

N—u m N—u m
R, = E Tplhtu < E E TakTa,k+u = E Roy.
k=1 a=1 k=1 a=1

(4)
The connection between the auto-correlation and auto-
covariation functions 74y = Raw/Rao, SO

m m
Ty = Z ZaTous Zo = RaO/ Z RBO- (5)
a=1 B=1

is a partial contribution of variance of the a* process
to the total variance. The ”"equal to” sign may be writ-
ten for mathematical expectation for stationary infinite
data runs. For real finite-length data, it is only an ap-
proximation. We may suggest that 24117 points is a
number, which is large enough for modeling.

In Fig. 1 and 2, the autocorrelation functions are
shown for 3 realizations of AR-1 process with the pa-
rameter ¢ = 0.99 and 0.999, respectively. The the-
oretical ACF p, = ¢ is asymptotically decaying to
zero, whereas the ACF's for realizations show apparent
waves, including zero crossings.

The coincidence of theoretical and ”observational”
("sample”) curves is better at small shifts u than at

large ones. Thus, for modeling, one should apply ad-
ditional weights decaying with wu.

One may note a good coincidence of sample ACF's
with theoretic curves for ¢ = 0.99 (and less, not
shown). However, for ¢ = 0.999, one may note system-
atical difference between theoretical and sample curves.
Such a distorsion is caused by high correlations of data
which increases the statistical error of the mean value,
as was discussed by Sutherland et al. (1987). This ef-
fect had been studied by Andronov (1994) for arbitrary
unbiased auto-correlation functions and basic functions
(e.g. polynomials) used for the LS trend removal. The
characteristic times obtained using this method for dif-
ferent stars have been published by Andronov (1999)
and Halevin et al. (2002).

2. Modeling ACF for the Chandra Data

The phase light curve of AM Her exhibits two-hump
structure, onto which the flickering is superimposed (cf.
Szkody and Brownlee 1977). Previous studies of flick-
ering assumed detrended segments of data, for which
the values of e—folding time 7. varied from 30 to 200 s
from run to run (Bailey 1977). Panek (1980) estimated
Te in a range of 70-96 sec, noting that the change of the
adopted trend (e.g. from linear to cubic) may cause
difference of estimates by a factor of 2-3 for the same
run.

Shakhovskoy et al. (1992) had modelled the ACF by
an expression

pu = aexp(—uT/1q) cos(ur T/219)(1 —u/N), (6)
where 74 is characteristic time for an exponential decay,
and 7y is the zero-crossing time.

In this paper, we use another approach, modeling
not the residuals of the data from some fit, but the
complete multi-component curve. To distinguish be-
tween contributions with different time scales, we use
logarithmic axis for the time shift (Fig. 3). The final
formula adopted for the smoothed ”calculated” ACF is

(21 - cos(u - 27T/ Pyyp) +

29 - cos(u - 47T [ Pypp) +

zg - exp(—uT/m) +

24 - exp(—uT/m2)) - (1 —u/N)

TCu =

(7)

Here first two contributions correspond to the orbital
variability and two-hump structure, respectively. It
was natural to add the third term corresponding to
the ”shot noise” with time 71. However, as one may
see from Fig.3, at short time scales, there is some ad-
ditional component, which may also be approximated
by a decaying exponent, but with much shorter time
scale 7.
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Figure 1. Auto-correlation function (ACF) for 3 realizations of the first-order Auto-regressive (AR-1) process
and theoretical decaying exponent for ¢» = 0.99.
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Figure 2. Auto-correlation function (ACF) for 3 realizations of the first-order Auto-regressive (AR-1) process
and theoretical decaying exponent for ¢ = 0.999.
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Figure 3. Auto-correlation function (ACF) in logarithmic scale for the Chandra observations and 4 particular
sums of the model of ACF. The 4-parameter model (upper curve) practically coincides with the observational

ACF.
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Figure 1: Dependence of the test function L(7,72) on exponential decay times 71 and 75.

To determine both parameters 7, and 72, we have
computed the test function

N—1
O(11,7m2) = Z Wy - (ry — Tcw)? (8)
k=1

with determination of parameters z;..z4 using linear LS
method for each pair of (71, 72). Here w, = (N —u)/Nu
are weight coefficients which take into account the de-
creasing number of points used for determination of
the sample ACF (N —u) with increasing u. Additional
division by w is unusual. We have chosen it, because,
in logarithmic scale, dlgu/du = lge - (du/u). So this
divizor allows to approximate minimization of the sum
by minimization of the corresponding integral, i.e. to
make the approximation better over a whole range of
shifts.

For illustrative purposes, we have transformed
the function & to the logarithm of the likely-
hood function L(71,72) = lgexp(—®(11,72)/2®) =
—®(11,72)/(2®0) - lge. Here ®( is the minimal value
corresponding to statistically optimized values of 1
and 7. This function is shown in Fig 4.

The best fit values correspond to 7, = 174s and
75 = 10s. For complicated weights, the accuracy esti-
mates may be computed using the generalized formu-
lae published by Andronov (1997) instead of simpli-
fied expressions. The coefficients z, are equal to z; =
0.316 £ 0.003, z2 = 0.107 £ 0.004, z3 = 0.129 + 0.024,
z4 = 0.050 + 0.032.

Despite the fourth coefficient exceeds it’s error es-
timate by a factor of only 1.6, the four-component
model corresponds to ®g which is by a factor of 1.4
smaller than that for the third-component model with
one AR process. Thus we may conclude that the four-
component model is statistically significant. The rela-
tively large error estimate just corresponds to nearly
parallel behaviour of ACFs with both exponentially

decaying shapes. The contrubution of non-correlated
noise is z5 = 1 — 21 — 29 — 23 — z4 = 0.398 is rather
large because of of small photon count rate.

The faster decay of the ACF for small shifts argues
that the flickering is the sum of least two AR pro-
cesses with different characteristic times rather than
one ”shot-noise” process with non-exponential flares.
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