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ABSTRACT. A resume of fruitful interaction bet-
ween analytical and numerical approach to the subject
of accretion disks around black holes is here presen-
ted. We review time dependent simulations of unvis-
cous and moderately viscous accretion flows. Convec-
tion or pressure dominated flows admit subkeplerian
solutions with or without shocks. The viscous adia-
batic solutions, however, don’t match smoothly to the
keplerian disk solutions. We show also that many dif-
ferent type of mechanisms can trigger quasi periodic
oscillations of the flow and consequently of the emitted
radiation.
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1. Introduction

Basic models of accretion disks assume a keplerian
rotation of the flow of matter falling onto the compact
astrophysical object (Pringle and Rees 1972, Shakura
and Sunyaev 1973, Novikov and Thorne 1973). Howe-
ver, the structure of the flow, when the angular mo-
mentum is smaller than keplerian or when the advect-
tion and pressure term are required, is still far from
being clear. Analytical solutions are difficult and often
uncertain, due to ad hoc simplifications like: vertical
equilibrium assuption, self similarity of the flow, ne-
glecting of pressure and viscous terms, unappropriate
boundary conditions and so on. Numerical solutions
don’t have general properties, but can verify the va-
lidity of the analytical solutions. Furthermore global
stability studies of the analytical solutions are possible
only by numerical simulations. They can even point
to some new phenomenon as an experimental result.
We will see some examples of this possibility. We will
examine unviscous accretion flows and adiabatic vis-
cous accretion solutions, comparing analytical steady
solutions with time dependent numerical solutions ob-
tained with different numerical algorithms. Section 2
describes the physical context and gives the relevant
analytical equations to be solved. Section 3 gives the
steady state solutions. Section 4 describes briefly the
numerical methods. Section 5 resumes the more inte-
resting results.

2. The physical scenario

Let us assume a viscous gas fall onto a black hole
with an initial subkeplerian amount of angular mo-
mentum. This means that, apart the simple case of
bremsstrhalung cooling, we assume there is no coo-
ling in our gas. Despite this limitation, different regi-
mes due to different values of the polytropic gas index
γ = cp/cv will appear. We have considered also the
case of bremsstrahlung cooled gas, due to the possibi-
lity to make a simple treatment of the derived solutions
and their relevant consequences. We assume that the
gravitational forces are derived from the Paczyński Wi-
ita potential. This is enough accurate to point out the
main physical processes and to produce the relativistic
behaviour of the flow, avoiding the complications of
an exact general relativistic treatment. Exact relativi-
stic steady state solutions for accretion onto Kerr black
holes have been discussed by Chakrabarti (1996). The
basic equations to be satisfied are the following ones:
Assume axis symmetric case, i.e. ∂

∂φ
= 0.

The mass conservation equation

Dρ

Dt
= −ρ∇v

The angular momentum equation is:

ρ
Dvφ

Dt
+ ρ

vφvr

r
=

[

1

r

∂

∂r
(rτrφ) +

τrφ

r

]

+
∂τφz

∂z

The energy equation

Dε

Dt
= −

P

ρ
∇v +

Φ

ρ
+ Λ

where ε is the thermal energy per unit mass, Φ is the
dissipation function, Λ ∼ ρT 0.5 the cooling function
and other symbols have the usual gas dynamic mea-
ning.

The expressions of the stresses will be specified in the
subsequent discussion. These are the equations that
will be integrated by time dependent codes.

3. Steady state solutions

Let us put the previous general time dependent equ-
ations in the typical steady state form:
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Mass conservation requires

·
m ∝ rρvrZdisk = const

Radial momentum
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with λ the angular momentum per unit mass
Tangential momentum
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Vertical momentum
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Energy equation
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= −
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r

d (rvr)
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+

Φ

ρ

Viscosity prescription

τrφ = −αP

or

τφr = µr
∂Ω

∂r

with µ the dynamic viscosity coefficient, rg = 2GM∗/c2

the Schwartzschild radius of the stellar object and gra-
vitational forces derived by Paczyński Wiita potential
Ψ (r) = −GM∗/(r − rg).

An interesting point, apparently unnoticed in the li-
terature, is the fact that it is possible to have a constant
energy property reformulating the energy equation in
this way :

div

[

ρv

(

1

2
v2 + Ψ (r) + h

)

− v :
↔
τ

]

= 0

here h is the enthalpy function h = ε+ P
ρ
. This energy

equation, after insertion of the stress definition, even in
its differential form, and using the mass conservation
equation, in general gives the following relationship :

1

2
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+
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−
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2r2
+

λλe
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=
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·
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Here λe is the angular momentum at the inner edge
of the disk, where the tangential stress vanishes. Above
formulae constitute the typical set of equations to be
solved to obtain the steady state solutions.

3.1 Unviscous cases

The unviscous case is simple to be solved, for a full

account see Chakrabarti 1990. Essentially it is very
similar to Bondi problem (Bondi, 1952). Let us resume
the solution for the pure 1D flow.

Mass conservation gives:

·
m= ρrv = ρrMa

M is the mach number,
·
m is the accretion rate, ρ is

the density, a is the sound speed.
Since the flow is unviscous the total energy is con-

stant, the Bernoulli theorem is valid:

1

2
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+
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2r2
− G

M∗
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= E

To solve the system we add the politropic relation
valid only for isentropic flow.

ρ

ρ0
=

(

a

a0

)
2

(γ−1)

If we put together all terms we find:

·
m= K · f (M ) ·A (E, λ, r)

with

f (M ) =
M

(

1
2M2 + 1

(γ−1)

)

γ+1
2(γ−1)

and

A (E, λ, r) = r · [E − Φ (λ, r)]
γ+1

2(γ−1)

Φ is function only of λ and r . This solution is valid
for any isentropic branch, the constant K = K (a0, ρ0)
is related to the entropy value.

The f function has a maximum at M = 1, the A
function has in general two relative minima.To small
energy constant E values correspond smaller A values
of the minimum at larger distances from the BH. The
other relative minimum is related to the λ value: large
λ produce smaller A values close to the BH. The f ·A
product must be constant along a flow. Therefore a
minimum of A has to correspond to the maximum of
f .

A flow connecting very large distances to the BH
horizon has M � 1 for large r and M � 1 close to the
horizon. As A approaches the outer minimum value
Aout = Amin (rout) the mach number has to increase to
M = 1 ,i.e. the solution has one sonic point at rout ;
so we may easily find this kind of solutions solving the
implicit equation for M(r) with an iteration procedure
or with any commercial equations solver :

f(1) · Aout = f (M ) · A (E, λ, r)

Let us call this solution M1 (r) .
We may also say that, if it exists a transonic solution

starting subsonically from some region and finishing
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supersonically into the BH, it must have the same be-
havior of the previous solution. However now the sonic
point has to correspond to the inner relative minimum
of the A function Ainn = Amin (rinn); so this second
solution come from this implicit equation:

f(1) · Ainn = f (M ) · A (E, λ, r)

Let us call this solution Msub (r) .
Now, if a shock on the solution M1 (r) occurs it pro-

duces a post shock mach value M2 given by the Hugo-
niot relations. If the M2 curve crosses the Msub curve
then a shock can , in principle, occur at that position
if the Msub solution correspond to an entropy status
greater than the M1 one.

The stable shock position is the outer one and is
obtained solving:

M2 (r, E, λ) = Msub (r, E, λ)

The solutions so obtained correspond exactly to the
ones obtained integrating the differential equations in
the way described by Chakrabarti in his book.

Figure 1: Mach number for steady state 1D solution
and time dependent results.

Fig.1 shows the analytical solution with the overplot-
ted numerical solutions obtained at different times. It
can be seen the exact agreement between the two so-
lutions for long integration time.

3.2 Viscous isothermal flows

This case mimics flows with very efficient cooling. It is
a plain schematic case, but it is useful to learn the topo-
logy of the solutions. For the τrφ = −αP prescription
it is even possible to have an algebraic solution (i.e. no
differential equation). Combining the mass conserva-
tion, angular momentum and energy equations we are
lead to solve the following algebraic equation:

1

2
v2

r −K2 ln |vr|−G
M∗

r − rg

−K2 ln (r)−
λ2

2r2
+

λλe

r2
= B

with λ = λe + αK2r
|vr|

This fact allows us to prove a

trivial, but interesting, fact: steady keplerian isother-
mal disks cannot exist, since the substitution of λ with
λkepler leads to contradictory results for vr , whatever
be the initial conditions. However, it is possible to
make a numerical simulation, constraining the gas flow
to be isothermal, with small constant sound speed, and
initial keplerian angular momentum to obtain a plain
keplerian disk (cfr. Chakrabarti and Molteni, 1995).
We may conclude that the keplerian disks are steady,
but in an average way: they are affected by a tur-
bulence (not the S.S. one) producing convection cells.
The time dependent S.P.H. simulations agree perfectly
with the analytical results obtained taking into account
convection, viscosity and pressure terms. For a detai-
led discussion see Chakrabarti and Molteni (1995).

3.3 Viscous adiabatic cases

We adopt the basic assumptions valid for simple mo-
dels of ADAFs (Narayan et al. 1998), i.e.: Low coo-
ling efficiency, that is neglect of cooling terms, Sha-
kura Sunyaev viscosity, vertical equilibrium, gradient
of pressure and convective terms are retained in the
equations. Let us briefly discuss the pure 1D case (i.e.
∂
∂z

= 0), whose results can be compared exactly with
the time dependent numerical simulations. In the case
of τrφ = −αP viscosity prescription we have the follo-
wing set of equations (to make the formulae clean we
are using v instead of vr).
For mass conservation

·
m= rρv

For the angular momentum

λ = λe − α
a2

γv
r2

For the radial momentum, retaining first order terms
in α, after substitution of ρ P and λ from the above
equations and use of the reference quantities rg, and c
(light speed) to adimensionalize the equation, we have

dv

dr
=

2 λea
2α +

[
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r

)

+ r2

2(r−1)2

]

v
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Energy equation gives

1

2
v2 +

λ2

2r2
−

1

2 (r − 1)
+

a2

(γ − 1)
+ α

a2

γ

λ

r · v
= E

where a is the adiabatic sound speed.
Therefore, we have four unknowns variables v, a, ρ,

and λ that can be obtained solving the above set of equ-
ations, one differential and three algebraic. The radial
momentum differential equation shows the presence of
a sonic point: The rs value for which a(rs) = −v(rs).
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For a regular accretion flow the derivative at rs must be
continuous , this requires that the numerator and the
denominator of the equation be simultaneously zero at
rs and consequently the value of the derivative

(

dv
dr

)

s
is well fixed. In this case the value of the derivative at
the sonic point depends univocally on the values of α,
E and λe.

So it is wrong to put its value to zero or whatever
other value, as many other authors do (Narayan et al,
1997). Typical solutions of this case are shown in the
paper by Chakrabarti 1998.

Figure 2: Solutions of 1D adiabatic viscous flows for
increasing viscosity α parameter

Fig.2(a-d) show stationary shock locations as functi-
ons of Shakura-Sunyaev viscosity parameter α in thin,
rotating, accreting flows. In (a), we plot density ρ(r),
in (b), we plot radial velocity vr(r), in (c), we plot λ(r)
and in (d), we plot Mach number Mr(r). The α va-
lues for which the curves are drawn are (left to right in
[a, b, d] and bottom to top in [c]): 0, 10−4, 2 × 10−4,
3 × 10−4, 4× 10−4 and 4.6× 10−4 respectively.

4. The numerical algorithms

We exploited basically two kind of numerical algo-
rithms to integrate the time dependent equations. One
is a Smoothed Particles Hydrodynamics code (SPH)
formulated in cylindrical coordinates. SPH is a lagran-
gean method based on interpolation criteria of the fluid
variables and of their derivatives. The interpolation
points move with the fluid speed. A full discussion
of the method is given in Monaghan (1985). For its
formulation in cilindric coordinates cfr. Molteni and
Sponholz 1994. Another code based on the Total Vari-

ation Diminuishing (TVD) procedure have also been
used. A comparison of the results of the two code
has been performed (Molteni, Ryu and Chakrabarti
1996) confirming the reliability of the simulations re-
sults. SPH has been used also for viscous and cooled
flows. For the study in the XY plane, using a r φ coor-
dinates, another set of two different type of TVD codes
has also been used cfr. Molteni, Toth and Kutznezov
1999, in this case SPH had too much shear numerical
viscosity.

5. Time variability

Obviously the time dependent approach, by the use
of numerical algorithms, allows the time variability
study of the solutions. Indeed we found that there
are many different ways in which the flow can exhibit
time variability.

5.1 Time variability for unviscous cases

For unviscous ideal gas flow we find that axis symme-
tric 1D solutions are stable. However, if the axis sym-
metry is broken, then a very interesting phenomenon
occurs. We performed simulations on the XY plane (no
zeta motion ∂

∂z
= 0) of the axis symmetric shock, using

a TVD code in r, φ coordinates that has a very low nu-
merical viscosity (detailed results are give in Molteni
et al. 1999). The shock forms at the predicted posi-
tion and is stable, but if the flow is perturbed with a
small (even 1% is enough) perturbation then the cir-
cular shape of the shock changes and the resulting de-
formation persists for ever, even if the average shock
position is close to the original one. Therefore the radi-
ation emitted by the post shock zone changes in time,
producing Quasi Periodic Oscillations. The variations
are more irregular for shocks produced with large an-
gular momentum, while shocks with small angular mo-
mentum may produce quite regular oscillations. Fig.3
shows the isocontours of the radial mach value.

Unviscous solutions for ideal gas may produce oscil-
lations also when the motion along the vertical direc-
tion is allowed. In this case, ∂

∂z
6= 0, for low energy

constant solutions, the disk thickness is very small and
vertical compression and expansion make the solutions
more unstable : recurrent shock formation within a fi-
nite range of the radial position occurs. Details of these
simulations are given in Ryu et al. 1997.

Futher oscillations are possible when a cooling is pre-
sent. We examined the plain case of an ideal gas with
γ = 5/3 cooled by the bremstrahlung process. We
considered therefore optically thin accreting regimes.
In this case the oscillations occur when the fall time
is close to the cooling time. We observed nearly regu-
lar oscillations in the 1D case. The centrifugal barrier
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Figure 3: Radial Mach contour levels in the XY plane
of a deformed, but permanent shock.

acts like a rigid wall. In the post shock region the gas
reaches extremely high temperatures. In the 2D cases
the post shock region is also very hot but now it can
expand and collapse in the vertical direction producing
a large hot corona around the thin accretion flow.

Figure 4: Hot corona of a unviscous accretion flow with
shock cooled by bremsstrahlung.

Fig.4 shows the isodensity levels of the hot corona,
with the velocity field overplotted, in the maximum
expansion phase.

5.2 Time variability for viscous cases

In the case of adiabatic and viscous accretion, the flow
in the subsonic region has large viscosity due to the hig-
her post shock temperatures. In these cases the post
shock flow forms an almost keplerian disk. The mat-
ter piles up in the disk and discharges into the black
hole in a recurrent way. Details are given in the work

Figure 5: R-Z projection of the particles for viscous
adiabatic flow with shock.

by Lanzafame et al. 1998. In Fig.5(a-d), we show the
first simulations of shocks in viscous flows where they
oscillate periodically. In (a-c), roughly half of the cycle
is shown where the shock location decreases monotoni-
cally. Total number of particles in this simulation is on
an average around 10, 000 (see, Fig. 6 below). In (d),
the shock drifted again outward. Note that apart from
the axisymmetric shock oscillation, a new, corrugated
instability, is also apparent in Fig. 4(d). Fig.6 shows
the mass of the disk versus the elapsed time.

Figure 6. Mass versus time of the adiabatic viscous
disk.
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6. Conclusions

Numerical time dependent simulations of accretion
flows demonstrate that analytical exact solutions can
be obtained only if the sonic point conditions are tre-
ated appropriately. Furthermore the numerical expe-

riments have shown that finite amplitude oscillations
of the flow can be produced in many different ways.
Consequently the time variability and the Quasi Peri-
odic Oscillation phenomenon of the radiation emitted
by accretion disk around black holes may be quite com-
mon even with very simple physical ingredients of the
models. Unfortunately this make harder to discern the
difference between compact stellar object and black ho-
les only on the basis of the time variability.
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