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1 Institute for Theoretical Physics and Astrophysics, Masaryk University
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ABSTRACT. In the last few decades both the vol-
ume of high-quality observing data on variable stars
and common access to them have boomed; however the
standard used methods of data processing and inter-
pretation have lagged behind this progress. The most
popular method of data treatment remains for many
decades Linear Regression (LR) based on the princi-
ples of Least Squares Method (LSM) or linearized LSM.
Unfortunately, we have to state that the method of lin-
ear regression is not as a rule used accordingly namely
in the evaluation of uncertainties of the LR parameters
and estimates of the uncertainty of the LR predictions.

We present the matrix version of basic relations of
LR and the true estimate of the uncertainty of the LR
predictions. We define properties of the orthogonal
LR models and show how to transform general LR
models into orthogonal ones. We give relations for
orthogonal models for common polynomial series.
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1. Introduction

The development in the field of variable stars re-
search from Tsessevichs times is enormous. The num-
ber of known variable stars has arisen by at least two
orders, as well as the number of their observers and in-
terpreters. It has arisen both the volume and common
access to high-quality variable stars observing data and
computational techniques. The number of new efficient
statistical techniques and methods that are available
for everybody thanks to wide spread personal com-
puters have been developed and published. Neverthe-
less, the methods used for processing of variable stars
data mostly have remained the same as those used in
Vladimir Platonovichs era.

Every astrophysicist likes large quantities and better
quality of modern observational data, new methods of
processing are not so popular. Majority of them needs
a good knowledge of matrix calculus, what is in dis-
cordance with a frequent syndrome of variable stars
observers, which could be named Matrixphobia. Very

rarely we are encountering with the opposite syndrome
of Matrixphilia which invades mathematically erudite
theoreticians loving new methods and matrices so much
that they do not use them for real observational data.
Both extremes in the data processing are bad and we
should find our golden mean.

The contemporary statistics shares inexhaustible
quantity of methods. It is necessary to select several of
the most versatile and diverse methods, master them
and to learn to combine them. The method of process-
ing must not be unique, but always must be made-to-
measure of the set problem.

The majority of variable stars data processing tasks
are solved using least square method, strictly speaking
linear regression, where as models serve the most fre-
quently common polynomials or sine/cosine series. It
should be noted that there exist several other meth-
ods which are able to give the same or better re-
sults. One of them is for example the Advanced Prin-
cipal Component Analysis, which is the combination of
LSM and standard Principal Component Analysis (see
Mikulášek, 2007). The method is optimal for solving
of a lot astrophysics problems as a realistic fitting of
multicolour light curves, the determination of the mo-
ments of extrema of multicolour light curves, modeling
of light multicolour curves which is necessary for the
process of improvement of ephemerides, diagnostics of
light curve (LC) secular changes, and the classification
of LCs. Other methods of modern data treatment are
also mentioned in Andronov, I., these Proceedings.

In the following section we will pay attention to
some details of linear regression procedure which is
very likely the most frequently used tool of variable
stars data processing.

2. The Least Squares Method

The very frequent astrophysical task is to fit a curve
through a series of N observed points described by a
triad {xi, yi, wi}, where xi is an independent (well mea-
sured) quantity like time or a phase, related to the i-th
measurement yi is the dependent, measured quantity
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like magnitude, O−C, and wi is the weight of the mea-
surement, as a rule inversely proportional to the square
of the expected uncertainty of the value yi. Hereafter
we will use normalized weights wi the mean value w̄ of
which is equal to 1.
F (x, ~β) is so called model function of x described by

the k free parameters β1, β2, . . . , βk arranged into the
vector ~β. We define a function of this vector S(~β):

S(~β) =

N
∑

i=1

[

yi − F (xi, ~β)
]2

wi. (1)

The solution of the LSM minimalization procedure, is
finding of the vector of parameters ~β = b, for which is
the quantity S(~β) minimal. The success of the method
in the given situation depends above all on our skill in
the creating of the mathematical model expressed by
the function F (x, ~β). Then the finding of the best fit
in the range of functions admissible by the pre-selected
model is relatively simple and straightforward. In prin-
ciple it is solution of k equations of k unknown param-
eters arranged in the vector b:

∂S

∂~β

∣

∣

∣

∣

~β=b

= grad
[

S(~β = b)
]

= ~0. ⇒ (2)

N
∑

i=1

yi
∂F (xi,b)

∂βj
wi =

N
∑

i=1

F (xi,b)
∂F (xi,b)

∂βj
wi, (3)

for j = 1, 2, . . . , k.

2.1. Linear regression

The LSM procedure of the determination of the solu-
tion will be considerably simplified if we use the linear
model of the found function F (x, ~β), assuming:

F (x, ~β) =

k
∑

j=1

βj fj(x), (4)

where fj(x) are arbitrary functions of x. Eq. 1 then
can be rewritten in the form:

S(~β) =

N
∑

i=1



 yi −

k
∑

j=1

βj fj(xi)





2

wi. (5)

Eq. 3 then switches to:

N
∑

i=1

yi fj(xi)wi =
N
∑

i=1

[

k
∑

p=1

bp fp(xi)

]

fj(xi)wi, (6)

It is advantageous to express all operations in matrix
form. Then

X =











f1(x1) f2(x1) · · · fk(x1)
f1(x2) f2(x2) · · · fk(x2)

...
...

. . .
...

f1(xN ) f2(xN ) · · · fk(xN )











, (7)

Y = (y1 y2 · · · yN )
T
; W = diag (w1 w2 · · · wN ) , (8)

H =
(

XTWX
)

−1
, b = HXTWY, Yp = Xb, (9)

R = YTWY − bTXTWY, s =

√

R

(N − k)
, (10)

where Yp is the vector of the predictions, w is the mean
value of weights wi, R is the weighted sum of square
deflections, s is the weighted standard deviation of the
fit.

The procedure of linear regression with the explicit
linear model is quick and its solution is unique.
In the general case we may find several solutions
although some of them could be physically unreal.
The most common method of finding of local minima
on the S(β) plane is an iterative gradient method,
where we use the above mentioned apparatus of lin-
ear regression applied on the linearized model function.

2.2. Linearized regression

The linearization of the general model function
F (x, ~β) consists in substitution of it by its Taylor ex-

pansion in respect of ~β. We need to know as good as
possible estimate be of the solution of LSM equations
b, be → b. Then we can write:

F (xi, ~β) ∼= F (xi,be) +

k
∑

j=1

∂F (xi,be)

∂βj
(βj − bej). (11)

S(~β) =

N
∑

i=1



∆yi −

k
∑

j=1

fj(xi)∆βj





2

wi, (12)

where

∆yi = yi − F (xi,be), fj(x) =
∂F (x,be)

∂βj
,

∆~β = ~β − be. (13)

The equations Eq. 5 and Eq. 12 are formally iden-
tical, despite the meanings of particular terms in
them are different. We define column vector ∆Y =
[∆y1 ∆y2 · · · yN ], and the column vector of the correc-
tion of the solution estimate be, ∆b.

H =
(

XTWX
)

−1
, ∆b = HXTW∆Y,

R = ∆YTW∆Y, s =

√

R

(N − k)
. (14)

Correcting be by ∆b we get the next solution estimate
be and we can repeat the whole procedure several
times. The convergence of accordingly selected LSM
model function is as a rule very swift: after a few steps
we state that ∆b→ 0, hence b = be.
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Figure 1: The illustrative figure displays the time de-
pendence of an observed quantity measured with the
accuracy denoted by the abscissa. The continuous line
represents LSM fit by the polynomial of the 3-rd order
(cubic parabola). Expected uncertainties of this pre-
diction calculated by the formula Eq. 16 are denoted
by dotted lines, true uncertainties given by Eq. 17 are
signed by dashed lines.

2.3. Uncertainties of parameters and prediction

There are at least three reasons why we should esti-
mate the measure of uncertainty of the found param-
eters. Firstly, errors of parameters tell us a lot about
the reliability of our results, secondly uncertainties of
parameters would enable to calculate the uncertainty
of the prediction done on the basis of our LSM analy-
sis, and last but not least above mentioned errors are
strictly demanded by teachers, scientific editors and
referees. All LSM instructions and codes congruently
get for uncertainty of the j-the parameter δbj the fol-
lowing relation:

δbj = s
√

Hjj , (15)

where Hjj is the j-th element in the diagonal of the
matrix H.

It is a question whether δbj really expresses the un-
certainty in the common sense. The response is no,
strictly speaking sometimes yes, but very rarely. It can
be demonstrated on the error of the absolute term in
the LSM fit by straight line, which evidently depends
on the choice of the origin of x coordinate.

The suspicion that there is something incorrect in
our comprehension of the true meaning of the quantity
δbj defined by Eq. 15 will be supported by our attempt
use these errors for the evaluating of the expected un-
certainty of the prediction by the model function for

the arbitrarily selected value of x:

δyp(x) =

√

√

√

√

k
∑

j=1

δ2bj f2
j (x) =

√

g(x)Hdg gT(x), (16)

where Hdg equals to the matrix H, whose all non-
diagonal elements has been put zero. g(x) is the row
vector of the gradient of the solution model function
F(x,b), g(x) = [f1(x) f2(x) . . . fk(x)]

The instructive picture Fig. 1 will show you that this
intuitive relation gives quite inadequate results. Never-
theless, it can be shown that it is valid formally rather
similar relation:

δyp(x) =

√

g(x)HgT(x). (17)

The matrix H is by the definition (see Eq. 9 and
14) a symmetric square k×k matrix with k(k + 1)/2
independent elements. If we want to enable to any-
body to compute the uncertainty of the prediction,
we should publish either the whole matrix H or its
non-trivial part at least. Nevertheless, there is another
(more illustrative) possibility: to transform the model
function into the orthogonal one. Then the matrix H

will change in the diagonal one and the uncertainties
of parameters will acquire its standard meaning. It
will help you among other things expertly examine
importance of individual terms.

3. Orthogonal LSM models

Let us assume that the functional dependence of ob-
served quantities y on x is well described by the model
function which can be expressed in the form of the
linear combination of k basic functions of fj(x) with
coefficients bj . The found solution does not change
if we use another set of k functions ϑj(x), which are
created as linear combinations of the basic functions
fj(x). Let us combine them so that the new set of ba-
sic functions ϑj(x) is orthogonal. It means we find the
set of coefficients {apj}:

ϑp(x) =
k
∑

j=1

apj fj(x), so that, (18)

ϑp ϑq =

N
∑

i=1

ϑp(xi)ϑq(xi)wi = 0 if p 6= q (19)

The calculation of linear regression parameters and
their uncertainties is then very simple:

bj =

∑N
i=1 yi ϑj(xi)wi
∑N

i=1 ϑ
2
j (xi)wi

; δbj =
s

√

∑N
i=1 ϑ

2
j (xi)wi

;

δyp(x) =

√

√

√

√

k
∑

j=1

δ2bj ϑ2
j (x). (20)
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The set of coefficients {apj} fulfilling constraints
Eq. 19 is not unique as well as the procedures of its
finding. We recommend to use the following procedure
which seems to us the simplest one:

ϑ1 = f1; ϑ2 = f2 − a21ϑ1;

ϑ3 = f3 − a32ϑ2 − a31ϑ1;

ϑp(x) = fp(x)−

p−1
∑

q=1

apq ϑq(x), (21)

where

apq =
fp ϑq

ϑ2
q

=

∑N
i=1 fp(xi)ϑq(xi)wi
∑N

i=1 ϑ
2
q(xi)wi

. (22)

The first three orthogonalized terms will be:

ϑ1(x) = f1(x); ϑ2(x) = f2(x)−
f2f1

f2
1

;

ϑ3(x) = f3(x)−
f3f2 − f3 f2

f2
2 − f2

2
f2(x)−

−





f3f1

f2
1

−
f2f1 (f3f2 − f3 f2)

f2
1

(

f2
2 − f2

2
)



 f1(x). (23)

The explicit expression of successive terms of a set
of the orthogonalized functions is more and more
complex, however it is not very complicated to write
an iterative PC code enabling to compute the formulae
for arbitrary number of parameters.

3.1. Orthogonal polynomial model

The most popular linear regression model (not only

in astrophysics) F (x, ~β) is:

F (x, ~β) =

k
∑

j=1

βj x
j−1. (24)

The model is known to have a lot uncomfortable prop-
erties which complicate both the calculation and the
interpretation of found results. We should never used
it without orthogonalization.

We recommend to put the origin of x-coordinates
into the center of gravity of observations: x → x− x̄
before the application of the orthogonalization proce-
dure. It will result in the considerable simplification in
the form of regression model. Assuming now x̄ = 0 the
first four orthogonal polynomials are as follows:

ϑ1(x) = 1; ϑ2(x) = x; ϑ3(x) = x2 −
x3

x2
x− x2,

ϑ4(x) = x3 −
x2

2
x3 + x3 x4 − x2 x5

x2
3
+ x3

2
− x2 x4

x2−

x3 x5 + x2
2
x4 − x4

2
− x3

2
x2

x2
3
+ x3

2
− x2 x4

x−
x2

2
x5 + x3

3
− 2x3 x4

x2
3
+ x3

2
− x2 x4

,
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Figure 2: The subsequent approximations of the fit of
observed data by orthogonal polynomial regression.

where,

xp =

∑N
i=1 x

p
i wi

∑N
i=1 wi

. (25)

Fig. 2 displays the results of subsequent fitting of the
model situation by constant, linear, quadratic and cu-
bic orthogonal polynomials.

If the data are distributed uniformly in the interval
xi ∈ 〈−∆; ∆〉, we can use the transformed Legendre
polynomials (orthogonal on the interval 〈−1; 1〉) as the
orthogonal (or quasiorthogonal) LSM model:

ϑ1 = 1; ϑ2 = x; ϑ3 = x2 −
∆2

3
; ϑ4 = x3 −

3∆2

5
x;

ϑ5 = x4 −
6∆2

7
x2 +

3∆4

35
; · · · (26)

3.2. Orthogonal sine, cosine model

The basic tool for the analysis of cyclic and periodic
processes in astrophysics is the linear regression with
the model consisting of simple periodic functions, the
most commonly:

F (ϕ, ~β) = β1 +

q
∑

j=1

β2j cos(2πjϕ) + β2j+1 sin(2πjϕ),

(27)
where ϕ is the phase as an independent variable, q
is the order of set of harmonic functions. The model
need not contain all of functions, it might be limited
e.g. only to even functions etc.

In the case that the observations are spread over the
whole cycle more or less uniformly, it is not needed
to do any orthogonalization, because all functions are
orthogonal itself. In the opposite case we should do
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orthogonalization e.g. by the procedure described by
Eq. 21 and Eq. 22.

4. Conclusions

We displayed the benefits of consequential usage of
orthogonal LSM model functions with the emphasis on
the polynomial regression as the chief tool of astrophys-
ical data processing. Orthogonal models enable to give
the true sense to errors of found parameters and easily
compute estimates for uncertainties of the prediction.
The orthogonality of the models removes the bad con-
ditioning of the solved systems of equations and help
us to obtain results not affected by computational er-
rors. We recommend to use them always, compulsorily
in the case of polynomial regression.

It is demanding to use new methods of variable stars
data processing which enable us better exploit informa-
tion hidden in observations. Endeavor connected with
mastering of them will return in new subtle discoveries
and revealing.

Matrix calculus, true using of weights, advanced
principal component analysis, factor analysis, robust
regression, creation and usage of orthogonal models
and several other processing techniques should ap-
pertain to compulsory outfit of each variable stars
observer of the 21st century.
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