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ABSTRACT. De Sitter model with magnetic field
was considered. The exact solution was obtained. The
properties of the model in comparison with empty de
Sitter model were analyzed.
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1. Introduction

There is the considerable interest arose in
cosmological models describing magnetic field in
the Universe (IITukuu, 1966; Vajk and Eltgroth, 1970;
Banerjee and Sanyal, 1986; Giovannini, 2000). At the
initial stage of evolution of the Universe such magnetic
field was much strong and played the important
role in expansion of the Universe. According to the
present observations (Riess, 2004; Virey J.-M., 2005)
the Universe expands with acceleration. Accelerated
expansion of the Universe now is explained by presence
of cosmological vacuum with a state equation:

(1)

where €5 = const. The vacuum energy density
dominates over energy densities of all other matter
(Perlmutter S., 1998). De Sitter model describes the
Universe with matter with the state equation (1). From
FEinstein equations we obtain de Sitter metric in the
form:
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where do? = df? + sin® fdyp?, ai = 8:5‘;/\. Let us

take for simplicity system of units in which Newton
gravitational constant G = 1 and light velocity
¢ = 1. This metric contains R and T-regions. There is
T-solution under r < ax. Under r» > a, this solution
describes R-region of the manifold. Recently many
original papers and reviews have been devoted to the
cosmological vacuum (Sahni and Starobinsky, 1999;
Carrol M., 2000; Yepuun, 2001; Sahni, 2004). In this
article we propose to consider de Sitter model with a
frozed magnetic field for the early Universe.

2. Solution

Let’s consider the homogeneous but anisotropic
magnetic field which depends on time only and
choose an axis along magnetic field. In synchronous
coordinate system we consider the spherically
symmetric metric in the form:

ds? = dt? — rDdR? — r2(t)do?. (3)

The nonzero components of Maxwell tensor for the
frozed magnetic field are Fb3 = —F35 = H; where H; is
magnetic field strength. Than from Maxwell equations
it follows that 851 = 0 (Kopkuna, MapTbhIHEHKO,
1977). Therefore stress-energy tensor of magnetic field
can be written in the following form:
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Anr2sin20’

(4)

0 _ 1 _ 2 _ 73 —
TOmag - Tlmag - _TZmag - T3mag -

Cosmological vacuum has constant energy density
and pressure. For the chosen metric nonzero
components of stress-energy tensor are:

TY =ep, Tf = T3 = T3 = py.

(5)

We assume the independence of the dust and
magnetic field. Then from conservation equation

(6)

for magnetic field it follows that:

(7)

where ¢ = const. Than we take the stress-energy
tensor as a sum of stress-energy tensors of vacuum and
magnetic field.

H, = gsinb,
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Then taking (8) into account we obtain Einstein field
equations in the form:
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(10)

(11)
where a dot ~ denotes differentiation with respect to t.
Integrating the equation (9) on time, we obtain:

(12)

Without a magnetic field we must obtain de Sitter
solution. We take an integration constant C' = 0. Than
integrating (12) under ¢ = 0 we obtain r = axch(t/ap).
The metric coefficient e* we find from (9):

e* = sh%(t/an). (13)

The obtained metric is the de Sitter solution in

synchronous coordinates:

ds® = dt* — sh*(t/ap)da® — a%ch®(t/ap)do®.  (14)

Integrating the equation (12) for case ¢ # 0 we

obtain:
2 2 2
T__1+ r _l_q_:CI(th/GA’ (15)
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where Cj is an integration constant. As far as the
obtained solution (15) must turn into de Sitter one,
thus C; = 1. Finally we have for r%(¢):
r2(t) = a%ch?(t/ap) + ¢Pe 2/, (16)
After integration of (9) we obtain the metric
coefficient e*®) in the form:
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(17)

Equations (16) and (17) determine de Sitter solution
with magnetic field. In expression (16) the magnetic
field contribution gives an item ¢?e~2!/9r, therefore
influence of a magnetic field on expansion in a radial
direction weakens exponentially. Dependences r(t) and
e*® in comparison with de Sitter metric are shown at
figures 1, 2. Under ¢t — oo the obtained solution turns
into de Sitter solution.

As for as 7 = 0 corresponds to a minimum r(¢) than
metric coefficient e* = 72 turn into zero under r =

2 .
Tmin = GA4 | T4 5, /14 %\ . However energy densities

of a magnetic field and vacuum are finite, the obtained
critical point is not the space-time singularity.

In curvature coordinates obtained metric have the
form:

ds® = e dt* — e dR? — etdo?, (18)

Puc. 1: Dependence 72(t). Dash curve is for r2(t) for de
Sutter metric, Solid curve is for de Sitter metric with
magnetic field.

t

Puc. 2: Dependence e*(t). Dash curve is for e*(t) for de
Sutter metric, Solid curve is for de Sitter metric with
magnetic field.
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where ¢ = 1 — 2—3 + g—z, e = eV, et = 22, The  References
A
event horizon between R- and T-regions is determined
by expression: Kopkuna M.II.;, Maptemenko B.I.: 1977, VO2K|

i = )2, (19)

where an (i denotes differentiation with respect to
x. For the obtained solution from (19) we have an
equation:

1‘2 q2

1-—+==0. 20
a% + x2 (20)
This equation has one positive solution:
1 1 442
= -+ =14+ . 21
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Under = > z; there is T-solution, under z < x
there is R-solution. As far as constant ¢ characterizes
a magnetic field, than the presence of a magnetic field
changes boundary between R- and T-regions of de
Sitter metric.

3. Conclusion

New solution with cosmological vacuum and
magnetic field has been obtained and the properties
of the model have been analysed. R- and T-region of
the model have been considered. It was shown, that
the influence of magnetic field decreases with time and
when t — oo de Sitter solution take place.
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