# NEW BINARY SYSTEMS WITH ASYMMETRIC LIGHT CURVES 

N.A. Virnina<br>Department "High and Applied Mathematics", Odessa National Maritime University, Odessa, Ukraine, virnina@gmail.com


#### Abstract

We present the results of investigation of the light curves of 27 newly discovered binary systems. Among the examined curves, there were 10 curves with statistically significant asymmetry of maximums, according the $3 \sigma$ criterion for the difference between the maximal brightness. Half of these 10 curves have a higher first maximum, another half the second one. Two of these 10 curves, USNO-B1.0 1629-0064825 = VSX J052807.9+725606 and USNO-B1.0 1586-0116785, show the largest difference between magnitudes in maxima. The star VSX J052807.9+725606 also shows the secondary minimum, which is shifted from the phase $\varphi=0.5$. The shape of the curve argues that the physical processes of this star could be close to that of well known short periodic binary system V361 Lyr, which has a spot on the surface of one star of the system. Another star, USNO-B1.0 1586-0116785, probably has a cold spot, or several spots, in the photosphere of one of the components.


Keywords: Variable stars: eclipsing, interacting binary, impactors

## Introduction

Nowadays, using rather accurate CCD photometry, it is possible to detect fine features of the light curves. Weve noticed that among various shapes of the phase curves of close eclipsing binary systems the asymmetry shapes arent very unusual. Many authors points that there are binary systems with rather steady asymmetric curves, other noticed that the shape of the phase curve may change in different years. To make an investigation of this effect, we decided to determine the number of statistically significant asymmetric curves among those binary systems, which we discovered during 2009-2010. Weve examined all 27 phase curves of binary systems of different types, which were discovered and approved in this period. All observations were obtained using the remotely controlled telescopes of Tzec Maun observatory: $-180(\mathrm{D}=180 \mathrm{~mm}, \mathrm{~F}=1410 \mathrm{~mm})$ equipped with the

CCD camera SBIG STL-11000, the field of view was $87.5^{\prime} \times 58.3$ ', and FSQ-106 ( $\mathrm{D}=106 \mathrm{~mm}, \mathrm{~F}=527 \mathrm{~mm}$ ) equipped with the same CCD camera, the field of view was $233.8^{\prime} \times 155.9$ '.

## Statistical modeling

For the examined 27 binary systems all parameters needed for the General Catalog of Variable Stars (GCVS) were determined using the FDCN software (Andronov, 1994, 2003). This program computes the coefficients of the statistically optimal smoothing trigonometric polynomials using the least squares method routine and differential corrections for the period, which allowed determine all photometric parameters with corresponding errors. Some of these stars we already registered in the VSX catalog Variable Stars IndeX, operated by AAVSO. The information about the USNO-B. 1 numbers of the stars, their coordinates, VSX numbers and types are given in the Table 1.

The information about the periods, magnitudes of maxima and minima was summarized in the Table 2. According to the $3 \sigma$ criterion, the values which are marked in bold type correspond to the stars with statistically asymmetric curves.

## Statistically significant asymmetry

From the Table 1 weve noticed that among the examined 27 light curves, there were 10 curves with statistically significant asymmetry of maxima. This means that more than $1 / 3$ of our binary systems has asymmetric phase curves. We introduced two parameters. The first is the difference between magnitudes in maxima: $\Delta \max =\operatorname{Max}_{I^{I}}-\operatorname{Max}_{\mathrm{I}}$.

The second is the difference between the magnitudes in the primary minimum and in the secondary maximum: $A=\min _{\text {I }}-\mathrm{Max}_{\text {II }}$. Both these parameters are also given in the Table 2.

We looked for the different statistical dependences: 1. between $\Delta \max$ and $\Delta \max / \mathrm{A}$. The corresponding diagram is shown on the Fig. 1;

Table 1. Identifications and co-ordinates (2000.0) of new variable stars

| No | USNO-B1.0 | RA | DEC | VSX | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | USNO-B1.0 0746-0450359 | $17^{\mathrm{h}} 44^{\mathrm{m}} 43 .{ }^{\text {s }} 452$ | -15 ${ }^{\circ} 20^{\prime} 14.12$ ' | VSX J174443.4-152014 | Ell: |
| 2 | USNO-B1.0 0746-0452118 | $17^{\mathrm{h}} 45^{\mathrm{m}} 09.615$ | -15 ${ }^{\circ} 23$ '29.54" | VSX J174509.6-152329 | EW |
| 3 | USNO-B1.0 1624-0096365 | $11^{\mathrm{h}} 37^{\mathrm{m}} 27 . \mathrm{s} .240$ | + $72^{\circ} 24^{\prime} 03.43 \prime \prime$ | VSX J113727.2+722403 | EW |
| 4 | USNO-B1.0 1611-0091801 | $11^{\mathrm{h}} 48^{\mathrm{m}} 36.524$ | +71 ${ }^{\circ} 07^{\prime} 51.14$ " | VSX J114836.5+710751 | EW |
| 5 | USNO-B1.0 1630-0091892 | $11^{\mathrm{h}} 55^{\mathrm{m}} 58 . \mathrm{s} .219$ | $+73^{\circ} 00^{\prime} 25.33$ " | VSX J115558.2+730025 | EW |
| 6 | USNO-B1.0 1611-0091333 | $11^{\mathrm{h}} 40^{\mathrm{m}} 30 . \mathrm{s} 022$ | +71 ${ }^{\circ} 11^{\prime} 02.44$ " | VSX J114030.0+711102 | EW |
| 7 | USNO-B1.0 1615-0092898 | $12^{\mathrm{h}} 06^{\mathrm{m}} 41 . \mathrm{s} 287$ | +71 $32^{\prime} 46.93$ " | VSX J120641.2+713246 | EW |
| 8 | USNO-B1.0 1229-0276915 | $14^{\mathrm{h}} 13^{\mathrm{m}} 40.556$ | $+32^{\circ} 56^{\prime} 48.16^{\prime \prime}$ | VSX J141340.5+325648 | EW |
| 9 | USNO-B1.0 1238-0228470 | $14^{\mathrm{h}} 15^{\mathrm{m}} 09.282$ | + $33^{\circ} 52^{\prime} 22.12$ " | VSX J141509.2+335222 | EB |
| 10 | USNO-B1.0 1017-0168554 | $08^{\mathrm{h}} 53^{\mathrm{m}} 48 . \mathrm{s} 933$ | + $11^{\circ} 43^{\prime} 53.64$ " | VSX J085348.9+114353 | EW |
| 11 | USNO-B1.0 1015-0165372 | $08^{\mathrm{h}} 54^{\mathrm{m}} 38 . \mathrm{s} 967$ | +11 ${ }^{\circ} 33^{\prime} 00.23 "$ | VSX J085438.9+113300 | EW |
| 12 | USNO-B1.0 1629-0064825 | $05^{\mathrm{h}} 28^{\mathrm{m}} 07 . \mathrm{s} 975$ | $+72^{\circ} 56{ }^{\prime} 06.05 "$ | VSX J052807.9+725606 | E |
| 13 | USNO-B1.0 1634-0053325 | $05^{\mathrm{h}} 33^{\mathrm{m}} 00 . \mathrm{s} 072$ | $+73^{\circ} 27^{\prime} 26.52^{\prime \prime}$ |  | EW |
| 14 | USNO-B1.0 1633-0056300 | $05^{\mathrm{h}} 28^{\mathrm{m}} 25.539$ | +73 ${ }^{\circ} 21^{\prime} 14.57^{\prime \prime}$ |  | EW |
| 15 | USNO-B1.0 1635-0051301 | $05^{\mathrm{h}} 35^{\mathrm{m}} 14.565$ | +73 ${ }^{\circ} 31^{\prime} 24.19 \prime \prime$ |  | EW |
| 16 | USNO-B1.0 1628-0064829 | $05^{\mathrm{h}} 30^{\mathrm{m}} 44 . \mathrm{s} 331$ | $+72^{\circ} 51^{\prime} 13.67^{\prime \prime}$ |  | EA |
| 17 | USNO-B1.0 1624-0065083 | $05^{\mathrm{h}} 25^{\mathrm{m}} 43 . \mathrm{s} 672$ | $+72^{\circ} 28^{\prime} 40.10^{\prime \prime}$ |  | EA |
| 18 | USNO-B1.0 1636-0050887 | $05^{\mathrm{h}} 34^{\mathrm{m}} 44 . \mathrm{s} 439$ | $+73^{\circ} 40^{\prime} 06.37 \prime$ |  | Ell |
| 19 | USNO-B1.0 1167-0308859 | $17^{\mathrm{h}} 39^{\mathrm{m}} 14 . \mathrm{s} 053$ | $+26^{\circ} 42^{\prime} 43.19$ " |  | EW |
| 20 | USNO-B1.0 1165-0287124 | $17^{\mathrm{h}} 38^{\mathrm{m}} 22.5563$ | +26 ${ }^{\circ} 33^{\prime} 04.40^{\prime \prime}$ |  | E |
| 21 | USNO-B1.0 1165-0287544 | $17^{\mathrm{h}} 39^{\mathrm{m}} 14 . \mathrm{s} 265$ | +26 $32^{\prime} 02.09 "$ |  | EW |
| 22 | USNO-B1.0 1160-0265767 | $17^{\mathrm{h}} 37^{\mathrm{m}} 23 . \mathrm{s} 199$ | +26 ${ }^{\circ} 02^{\prime} 51.73^{\prime \prime}$ |  | EA |
| 23 | USNO-B1.0 1161-0280071 | $17^{\mathrm{h}} 39^{\mathrm{m}} 52 . \mathrm{s} 694$ | $+26^{\circ} 10^{\prime} 20.02^{\prime \prime}$ |  | EW |
| 24 | USNO-B1.0 1159-0264420 | $17^{\mathrm{h}} 38^{\mathrm{m}} 51 . \mathrm{s} 239$ | +25 ${ }^{\circ} 57^{\prime} 46.69$ " |  | EB |
| 25 | USNO-B1.0 1164-0290487 | $17^{\mathrm{h}} 38^{\mathrm{m}} 59.968$ | $+26^{\circ} 28^{\prime} 28.94 "$ |  | EW |
| 26 | USNO-B1.0 1165-0287332 | $17^{\mathrm{h}} 38^{\mathrm{m}} 48^{\text {s. }} 917$ | +26 ${ }^{\circ} 34^{\prime} 37.20^{\prime \prime}$ |  | EW |
| 27 | USNO-B1.0 1586-0116785 | $11^{\mathrm{h}} 28^{\mathrm{m}} 25 . \mathrm{s} 293$ | $+68^{\circ} 37^{\prime} 17.46$ " |  | EB |



Fig.1. Diagram $\Delta \max / \mathrm{A}$ vs. $\Delta \max$.


Fig.2. Diagram $\Delta \max /$ A vs. period


Fig.3. Diagram $\Delta \max$ vs. period.


| N | Type | Period $P$ | Initial epoch $T_{0}$ | $\operatorname{Max}_{\mathrm{I}}(\mathrm{CR})$ | $\mathrm{Max}_{\text {II }}$ | $\min _{\mathrm{I}}(\mathrm{CR}$ | $\min _{\text {II }}$ | $\Delta$ max | $\frac{\Delta \max }{\sigma}$ | $A$ | $\frac{\Delta \text { max }}{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Ell: | $0.270841 \pm 0.000020$ | $2454945.1622 \pm 0.0032$ | $12.870 \pm 0.003$ | $12.860 \pm 0.004$ | $12.964 \pm 0.004$ | $12.959 \pm 0.004$ | $-0.010 \pm 0.005$ | 2.000 | $0.104 \pm 0.006$ | -0.0962 |
| 2 | E | $0.417856 \pm 0.000025$ | $2454945.8432 \pm 0.0014$ | $14.814 \pm 0.011$ | $14.801 \pm 0.005$ | $15.136 \pm 0.007$ | $15.128 \pm 0.010$ | $-0.013 \pm 0.012$ | 1.083 | $0.335 \pm 0.009$ | -0.0388 |
| 3 | EW | $0.413660 \pm 0.000013$ | $2455192.8152 \pm 0.0012$ | $13.489 \pm 0.002$ | $13.458 \pm 0.003$ | $13.664 \pm 0.004$ | $17.639 \pm 0.002$ | $-0.031 \pm 0.004$ | 7.750 | $0.206 \pm 0.005$ | -0.1505 |
| 4 | EW | 0.37 | $2455191.7896 \pm 0.0005$ | 14 | 14 | $14.932 \pm 0.007$ | $14.860 \pm 0.004$ | $0.027 \pm 0.007$ | 3.857 | $0.546 \pm 0.009$ | 5 |
| 5 | EW | $0.294039 \pm 0.000004$ | $2455191.4051 \pm 0.0003$ | $14.829 \pm 0.008$ | $14.853 \pm 0.009$ | $15.638 \pm 0.009$ | $15.552 \pm 0.008$ | $0.024 \pm 0.012$ | 2.000 | $0.785 \pm 0.013$ | 0.0306 |
| 6 | EW | 0 | $2455192.4772 \pm 0.0005$ | 13 | $13.610 \pm 0.003$ | $13.977 \pm 0.003$ | $13.963 \pm 0.005$ | 0.018土0.004 | 4.500 | $0.367 \pm 0.004$ | -0.0490 |
| 7 | EW | $0.475366 \pm 0.000012$ | $2455192.6380 \pm 0.0005$ | $13.128 \pm 0.002$ | $13.137 \pm 0.006$ | $13.457 \pm 0.002$ | $13.404 \pm 0.003$ | $0.009 \pm 0.006$ | 1.500 | $0.320 \pm 0.006$ | 0.0281 |
| 8 | EW | $0.469085 \pm 0.000044$ | $2455268.8822 \pm 0.0011$ | $16.821 \pm 0.026$ | $16.867 \pm 0.023$ | $17.593 \pm 0.018$ | $17.494 \pm 0.022$ | $0.046 \pm 0.037$ | 1.243 | $0.726 \pm 0.029$ | 0.0634 |
| 9 | EB | $0.478130 \pm 0.000040$ | $2455268.5270 \pm 0.0007$ | $12.834 \pm 0.003$ | $12.833 \pm 0.002$ | $13.080 \pm 0.003$ | $12.916 \pm 0.002$ | $-0.001 \pm 0.003$ | 0.333 | $0.247 \pm 0.004$ | -0.0040 |
| 10 | EW | $0.268768 \pm 0.000026$ | $2455233.4364 \pm 0.0011$ | $16.006 \pm 0.011$ | $16.034 \pm 0.014$ | $16.376 \pm 0.014$ | $16.296 \pm 0.014$ | $0.028 \pm 0.018$ | 1.556 | $0.342 \pm 0.020$ | 0.0819 |
| 11 | E | $0.434548 \pm 0.000018$ | $2455233.6290 \pm 0.0006$ | $14.182 \pm 0$. | $14.134 \pm 0.007$ | $14.542 \pm 0.004$ | $14.398 \pm 0.004$ | $-0.048 \pm 0.007$ | 6.857 | $0.408 \pm 0.008$ | -0.1176 |
| 12 | E | $0.411670 \pm 0.000054$ | $2455261.8510 \pm 0.0015$ | $15.920 \pm 0.010$ | $16.227 \pm 0.016$ | $16.550 \pm 0.016$ | $16.341 \pm 0.011$ | $0.307 \pm 0.019$ | 16.158 | $0.323 \pm 0.023$ | 0.9505 |
| 13 | EW | $0.345439 \pm 0.000049$ | $2455262.1281 \pm 0.0011$ | $15.884 \pm 0.009$ | $15.901 \pm 0.009$ | $16.226 \pm 0.008$ | $16.181 \pm 0.010$ | $0.017 \pm 0.013$ | 1.308 | $0.325 \pm 0.012$ | 0.0523 |
| 14 | EW | $0.415351 \pm 0.000024$ | $2455261.9148 \pm 0.0006$ | $14.545 \pm 0.005$ | $14.553 \pm 0.003$ | $14.798 \pm 0.003$ | $14.796 \pm 0.003$ | $0.008 \pm 0.005$ | 1.600 | $0.245 \pm 0.004$ | 0.0327 |
| 15 | EW | $0.456908 \pm 0.000028$ | $2455261.8903 \pm 0.0010$ | $14.523 \pm 0.004$ | $14.515 \pm 0.004$ | $14.761 \pm 0.003$ | $14.756 \pm 0.004$ | $-0.008 \pm 0.006$ | 1.333 | $0.246 \pm 0.005$ | -0.0325 |
| 16 | EA | $0.336481 \pm 0.000020$ | $2455261.9982 \pm 0.0005$ | $15.318 \pm 0.006$ | $15.312 \pm 0.005$ | $15.918 \pm 0.007$ | $15.798 \pm 0.007$ | $-0.006 \pm 0.008$ | 0.750 | $0.606 \pm 0.009$ | -0.0099 |
| 17 | EA | $0.642197 \pm 0.000012$ | $2455261.1514 \pm 0.0014$ | $15.732 \pm 0.026$ | $15.718 \pm 0.032$ | $16.401 \pm 0.016$ | $16.385 \pm 0.016$ | $-0.014 \pm 0.041$ | 0.341 | $0.683 \pm 0.036$ | -0.0205 |
| 18 | Ell | $0.292492 \pm 0.000019$ | $2455261.8475 \pm 0.0005$ | $14.120 \pm 0.002$ | $14.113 \pm 0.002$ | $14.246 \pm 0.002$ | $14.240 \pm 0.002$ | $-0.007 \pm 0.003$ | 2.333 | $0.133 \pm 0.003$ | -0.0526 |
| 19 | EW | $0.245108 \pm 0.000006$ | $2455312.3737 \pm 0.0006$ | $15.614 \pm 0.004$ | $15.606 \pm 0.002$ | $15.700 \pm 0.003$ | $15.682 \pm 0.003$ | $-0.008 \pm 0.004$ | 2.000 | $0.094 \pm 0.004$ | -0.0851 |
| 20 | E | $0.266685 \pm 0.000006$ | $2455311.0962 \pm 0.0012$ | $15.073 \pm 0.001$ | $15.048 \pm 0.002$ | $15.169 \pm 0.001$ | $15.126 \pm 0.002$ | $-0.025 \pm 0.002$ | 12.500 | $0.121 \pm 0.002$ | -0.2066 |
| 2 | EW | $0.248007 \pm 0.000005$ | $2455312.6068 \pm 0.0009$ | $16.840 \pm 0.006$ | $16.827 \pm 0.006$ | $17.105 \pm 0.006$ | $17.092 \pm 0.005$ | $-0.013 \pm 0.008$ | 1.625 | $0.278 \pm 0.008$ | -0.0468 |
| 22 | EA | $0.433131 \pm 0.000008$ | $2455312.7456 \pm 0.0004$ | $15.753 \pm 0.021$ | $15.777 \pm 0.019$ | $16.556 \pm 0.022$ | $16.186 \pm 0.025$ | $0.024 \pm 0.028$ | 0.857 | $0.779 \pm 0.029$ | 0.0308 |
| 23 | EW | $0.292380 \pm 0.000003$ | $2455312.4524 \pm 0.0003$ | $16.667 \pm 0.006$ | $16.651 \pm 0.003$ | $17.195 \pm 0.005$ | $17.168 \pm 0.005$ | $-0.016 \pm 0.007$ | 2.286 | $0.544 \pm 0.006$ | -0.0294 |
| 24 | EB | $0.282757 \pm 0.000003$ | $2455312.3299 \pm 0.0002$ | $15.143 \pm 0.003$ | $15.167 \pm 0.004$ | $15.666 \pm 0.004$ | $15.363 \pm 0.004$ | $0.024 \pm 0.005$ | 4.800 | $0.499 \pm 0.006$ | 0.0481 |
| 25 | EW | $0.241996 \pm 0.000001$ | $2455312.3475 \pm 0.0001$ | $14.825 \pm 0.004$ | $14.801 \pm 0.004$ | $15.631 \pm 0.005$ | $15.525 \pm 0.004$ | $-0.024 \pm 0.006$ | 4.000 | $0.830 \pm 0.006$ | -0.0289 |
| 26 | EW | $0.361080 \pm 0.000002$ | $2455312.3549 \pm 0.0002$ | $13.035 \pm 0.002$ | $13.049 \pm 0.002$ | $13.314 \pm 0.001$ | $13.300 \pm 0.001$ | $0.014 \pm 0.003$ | 4.667 | $0.265 \pm 0.002$ | 0.0528 |
| 27 | EB | $0.445393 \pm 0.000016$ | $2455278.1853 \pm 0.0012$ | $13.557 \pm 0.004$ | $13.624 \pm 0.005$ | $13.795 \pm 0.004$ |  | $0.067 \pm 0.006$ | 11.167 | $0.171 \pm 0.006$ | 0.3918 |



Fig.4. The phase curve of the star VSX J052807.9+725606.


Fig.5. The phase curve of the star USNO-B1.0 1586-0116785.
2. between $\Delta \max / \mathrm{A}$ and the value of the period (Fig.2);
3. between $\Delta$ max and the value of the period (Fig.3).

We found no statistical dependence between the period and $\Delta \max / \mathrm{A}$ or $\Delta \max$. But there are 2 points, which are separated from the "main cloud", they are marked by squares on the plots. The point No. 1 corresponds to the star No 12 in the Tables 1 and 2, USNO-B1.0 1629-0064825 = VSX J052807.9+725606. The point No. 2 corresponds to the star No. 27, USNO-B1.0 1586-0116785.

## The most unusual curves

Two stars, which marked on the Fig 1-3 exhibits the largest difference between magnitudes in maxima. The phase curve is shown on the Figure 4. The first of them, No. $1=$ VSX J052807.9+725606, is very similar to the well known binary system V361 Lyr. Both of these stars exhibit a huge difference in maxima, the first maximum is brighter than the second one. Besides, in both cases the phase of the first maximum is not 0.25 , but 0.30 , and the phase of the secondary minimum is not 0.50 , but 0.52 for V361 Lyr and 0.54 for VSX J052807.9+725606. According to the classical model of V361 Lyr, the cause of this asymmetry is a presence of a hot spot in the photosphere of the first component. The accretion matter streams through the inner Lagrangian point from the second component to the first one, however it doesnt form the accretion disk, but, deviated by the Coriolis force from the line of centres, impacts into the photosphere of the accretor with a shift towards the orbital motion. The shock appears, which heats the surrounding plasma, and a hot spot is formed in the atmosphere. We assume that the same mechanism is present in VSX J052807.9+725606. The more detailed investigation of this star had been described in the paper "A New Binary System with an Unusual Asymmetric Light Curve" (Virnina and Andronov, 2010).

Another interesting binary system, which was marked by No. 2 (No. 27 in the Tables) shows rather big asymmetry too, but doesnt exhibit a confident shift of the secondary minimum. The phase curve of this star is shown on the Figure 5.

Taking into account the shape of the phase curve, we may assume the presence of a cool spot on one of the stars, which is visible near the phase of the second maximum. This version of the asymmetry could be confirmed during the further observations.

## Conclusions

We've analyzed 27 newly discovered binary systems. Ten of them have the curves with statistically significant asymmetry of maximums, which means that more than $1 / 3$ of the stars investigated in this paper have asymmetrical curves. One of the most probable solutions for these stars is the presence of a cold or a hot spot (or group of spots) in the photosphere of one or even both of the components. The question of stability of these spots could be solved due to further multicolor photometrical and spectroscopic observations.

Acknowledgments. This work is based on data collected with the Tzec Maun Observatory, operated by the Tzec Maun Foundation. The author is grateful to Ron Wodaski (director of the observatory) and Donna Brown-Wodaski (director of the Tzec Maun Foundation).

Also the author is thankful to Prof. Ivan L. Andronov for helpful discussions.

## References

Andronov I.L.: 1994, $O A P, \mathbf{7}, 49$
Andronov I.L.: 2003, ASPC, 292, 391
Andronov I.L., Richter G.A.: 1987, AN, 308, 235
Samus N.N. et al.: 2010, General Catalog of Variable
Stars, http://www.sai.msu.su/groups/cluster/gcvs/
van Rensbergen W., De Greve J.P., De LooreC., Mennekens N., 2008, Aध $3,487,1129$
Virnina N.A., Andronov I. L.: 2010, OEJV, 127, 1
VSX, http://vsx.aavso.org/
Zhang X.B., Zhang R.X., Fang M.J., 2002, $A \xi A$, 395, 587

