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ABSTRACT. The application of the microscopic theory 
of superconductivity to describe the early Universe makes 
it possible to solve the problem of dark energy. In the 
cosmological models with superconductivity (CMS) this 
problem is solved in a natural way: dark energy is the re-
sult of pairing of primary fermions with the Planck mass, 
and its calculated density is equal to 6∙10-30 g/cm3 and is in 
good agreement with data of PLANK collaboration. At the 
same time the birth of space-time domains can also be 
described in the proposed model. Characteristic parame-
ters of interaction of primary fermions determine the 
changes of the scale and values of different, but conjugate 
with each other, phase transitions – for the dark energy, 
the observed evolving Universe and other component of 
the condensate of primary fermions.  

Keywords: gravity, superfluid gas, fermions, evolution of 
the universe, dark energy, vacuum energy. 
 

1. Introduction 
 

It was provided a number of approaches for solve the 
problem of the cosmological constant and dark energy 
(Weinberg, 1989). Previously we described the process of 
formation of dark energy as a condensate of primary fer-
mions, by analogy with the theory of superconductivity by 
Bardeen-Cooper-Schrieffer (BCS) (Bardeen, Cooper & 
Schrieffer, 1957). The vacuum was regarded as an ana-
logue of a crystal at Planck distances (Fomin, 1990). 
However, we can consider the more general problem of 
the formation of Bose condensate from Fermi gas, which 
gives better understanding of the dark energy nature and a 
new approach to solving the problem of the cosmological 
constant and dark energy. At the present time the dark 
energy manifests itself as anti-gravity, not only on a cos-
mological scale, but on the scale of galaxy groups (Ka-
rachentsev et al., 2009; Bisnovatyi-Kogan & Chernin, 
2012; Chernin et al., 2013; Eingorn & Zhuk, 2012; Bri-
lenkov, Eingorn & Zhuk, 2015; Bukalov, 2015). 

 
2. The energy spectrum of the superfluid gas  

and density of dark energy 
 
Let us consider the degenerate almost ideal Fermi gas 

with attraction between the particles, which are the primary 
fermions with a mass close to the Planck mass: PM M . It 
is well known, that even in the presence of an arbitrarily 

weak attraction between the particles, the ground state of 
the system is unstable respect to the restructuring, changing 
whole system and lowering its energy (Bardeen, Cooper & 
Schrieffer, 1957; Pitaevskii & Lifshitz, 1980). This instabil-
ity arises from the Cooper effect, i.e. aspiration to the for-
mation of bound states of fermions pairs that are in the  
p-space near the Fermi surface and have momenta equal in 
direction and antiparallel spins. For consideration of this 
problem, following to (Pitaevskii & Lifshitz, 1980), we 
introduce the Bogolyubov transformation of the operators, 
which bring together the operators of the particles with op-
posite momenta and spins: 

p, p,p p p p
ˆ ˆˆ ˆ ˆ ˆ, .p p p pb u a v a b u a v a   

 
        (1) 

The indexes + and – refer to the two values of the spin 
projection. With gas isotropy the coefficients pu , pv  can 
depend only on the absolute value of the momentum p . 
The operators comply with the creation and annihilation 
of quasiparticles on condition:  

p p p p
ˆ ˆ ˆ ˆ 1b b b b 
     , (2) 

where the index   numbers the two values of the spin 
projection. Other pairs of operators are anticommutative. 
Therefore, the transform coefficients are imposed a condi-
tion:  

2 2 1p pu v  . (3) 
The transformation inverse to (1) takes the form 

p, p,p p p p
ˆ ˆ ˆ ˆˆ ˆ, .p p p pa u b v b a u b v b   

 
        (4) 

Due to the primary role of the interaction between pairs 
of particles with opposite momenta and spins we write 
only the Hamiltonian with the members, in which 

1 2 1 2p p p, p p p        . It is following:  
2

p p p p , p, p
p pp

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2
p gH a a a a a a
m V

  
        



   ,  (5) 

where 24 /g b m   is a “coupling constant”, 0b   is 
the scattering length.  

For the account of constancy of the number of particles 
in the system a new Hamiltonian is introduced as a differ-
ence ˆ ˆ ˆH H N   , where p p

p

ˆ ˆ ˆN a a
 



  is a particle 

number operator. In this case the chemical potential is 
determined by the condition that the average value N  is 
equal to a given number of particles in the system (Pi-
taevskii & Lifshitz, 1980).  
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Introducing 2 / 2p p m    and 2 / 2Fp m  , we get 
near the Fermi surface ( )p F Fv p p   , where 

/F Fv p m . Subtract N̂  from the expression (5). Then 

p p p p , p, p
p pp

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .p
gH a a a a a a
V

  
        



      (6) 

Making the transformation (4) with (2) and (3) and re-
placing p  by p , we get 

   

 

2 2 2
p p p p

p p

p p, p, p p p
p pp

ˆ ˆ ˆ ˆˆ 2

ˆ ˆ ˆ ˆ ˆ ˆ2 ,

p p p p p

p p p p

H v u v b b b b

gu v b b b b B B
V

 
   

  
     



       

    

 

 
(7) 

 2 2
p p, p p p, p, p, p p

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
p p p pB u b b v b b v u b b b b   

               . 

The choice of the coefficients pu , pv  can be carried out 
from the condition of minimum energy E  of the system 
at a given entropy. The entropy is determined by the com-
binatorial expression (Pitaevskii & Lifshitz, 1980): 

p p p p
p

ln (1 ) ln(1 )S n n n n   


       . 

In the Hamiltonian (7) diagonal matrix elements have 
only members, containing products p p p

ˆ ˆ ,b b n
    

p p p
ˆ ˆ 1b b n
   . Therefore, we find 

   2 2 2
p p

p p

2

p p
p

2

(1 ) .

p p p p p

p p

E v u v n n

g u v n n
V

 

 

      

 
   

 

 


 (8) 

Varying this expression on the parameters pu  (taking 
into account the relation (3)), we obtain as the condition 
for the minimum 

p p

2 2
p p

p

2 (1 ) 2

( ) (1 ) 0.

p p p
p p

p p p p

E n n u v
u v

g u v u v n n
V

 

    


      


    




 

Hence, we find the equation  
2 22 ( )p p p p pu v u v    ,  (9) 

where   is the sum of:  

p p
p

(1 )p p
g u v n n
V      . (10) 

From (9) and (3) we express pu , pv  via p  and  :  
2

2 2 2

1 1
2

p p

p p

u

v

           
. (11) 

Substituting these values in the (10), we obtain an equa-
tion that determines  : 

p p

2 2
p

1
1

2
p

n ng
V

  


  
 . 

In equilibrium, the occupation numbers of quasiparticles 
does not depend on the spin direction and are given by the 
Fermi distribution with zero chemical potential: 

1/
p p p 1Tn n n e


        . Going also from summa-

tion to integration over p -space, we can write this equa-
tion in the form  

3
p

32 2

1 2
1

2 (2 )
p

ng d p


 
 

. (12) 

When 0T   quasiparticles are absent, 0   , so that 

p 0n   and the equation (12) takes the form 
2

3 2 2
0

4 1
2(2 )

p

g p dp


   


. (13) 

The main contribution to the integral in (13) comes 
from momentum range, in which 

0 ~F F F Fv p p v p     and the integral is logarith-
mic ( 0  is small in comparison with  , that confirmed by 
the result). After cutting the logarithmic integral for 

~     we obtain 
2 22

1/2 2 2 1/ 22 2 2
000

2
ln

( )( )
F F

F FF F

p pp dp d
v vv p p

 
 

      
 

 . 

Here 2 3
0ln( / ) / 2 1Fgmp      , and 

   2 3
0 exp 2 / exp / 2F Fgmp p b           or 

0 exp( 2 / )Fg     , where 2 3/F Fmp     is the en-
ergy density of the particle states on the Fermi surface 
( d   is the number of states in the interval d ).  

Let us consider the shape of the energy spectrum of the 
system. The energy of the elementary excitations is 

p p (p)      . It is the change in energy of the entire 
system when changing the quasiparticle occupation num-
bers:  p/

p pu v
E n     . The calculating of ( )p  gives 

(Pitaevskii & Lifshitz, 1980): 2 2( ) pp     . Thus, the 
energy of quasiparticles can not be less than  . For 

Fp p  ( )p   . Therefore, the excited states of the 
system are separated from the main energy gap, as well as 
the quasi-particles must appear in pairs, it is possible to 
write down the value of this gap as 2 . From ( ) 0p   it 
follows that the Fermi gas has superfluidity. Thus from 
quasiparticles with energies ( )p  a gas appears, which 
moves translationally as a single unit relative to the fluid 
with velocity v . Such gas from quasiparticle corresponds 
to the normal component of the superfluid. The rest of the 
liquid will behave like a superfluid component. The den-
sity of such superfluid liquid is equal to the sum of the 
normal and superfluid components: n s    . An im-
portant property of superfluid motion is its potentiality: 
rot 0sv  . The energy 2  is the energy of the Cooper 
pairs. It must be expended to break a pair. The value of 
the distance between the particles with correlated mo-
menta, or the coherence length, is 

2
0 0/ /F

p b
F Fv e p



    


 . 
From thermodynamics of superfluid Fermi gas it fol-

lows (Pitaevskii & Lifshitz, 1980) that 0  , when 
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0 0/ 0.57cT       
28 1 3.063 1

7 (3)c c
c c

T TT T
T T

 
       

. (14) 

We calculate the heat capacity of the gas. At low tem-
peratures, we start from the formula 

( ) 2p p p
p p

E n n n           

to change the total energy by varying the quasiparticle 
occupation numbers. Divided into T  and go from sum-
mation to integration, we obtain the heat capacity: 

2 3
Fmp nC V d

T






  

 
, where V  is a volume.  

When T   quasi-particle distribution function is 
/Tn e , and their energy is 2

0 0/ 2      . We inte-
grate and get: 

0

5/2
/0

3/2 3 3/2

2 TFmpC V e
T




 
. (15) 

Thus, for 0T   the heat capacity decreases exponen-
tially. This is a direct consequence of the presence of the 
gap in the energy spectrum. The difference between the 
basic levels of the superfluid and normal systems is (Pi-
taevskii L.P., Lifshitz E.M., 1980): 

2
02 34

F
s n

mpE E V   
 

. (16) 

The sign “–” in (16) is the instability of the “normal” 
ground state in the case of attraction between gas parti-
cles. On one particle it falls 2~ /  . We apply the theory 
outlined above to description the dark energy of the Uni-
verse and calculation of its density. We transform (16) 
into the expression for the density: 

2
02 34

s n FE E mp
V


    
 

. (17) 

The observed density of dark energy can be regarded as 
the binding energy of the fermions. Therefore, considering 
it as the difference between the densities of the energies of 
the levels of the superfluid and normal systems, it is nec-
essary to attribute this difference as negative, indicating 
instability of the normal ground state for an arbitrarily 
small attraction between fermions, according to (17). 

With 2
02 3

1
8 4

F
DE

N

mp
G

      
  

 we choose, for 

example, / 8Fv c  , in order to the fermion velocity on 
the Fermi surface was lower than the speed of light. Then 

2 2 2
0 / 4 /

F

F F
p b p b b

P Pe M e M e
 

  

     
 

  
1

/4 / 4i
PM e


   , where PM  is the Planck mass. 

At 
2

2 2/2 2 2
0 / 4 ip be e




       


  , where i  is the 
constant of fermions interaction. We estimate the value of 

i . Since 1/ 1/1/2 / /i i
Pe M e C     , then assuming a 

natural cutoff parameter of maximum energy equal to 
PM  , when 1(137.0599)i em

     and 8C   , we 
obtain: 

 
1

5

2 3 2 21/

1 1 ,
2564 8 emi

DE
NN P

c
G eG t e


  

  
 (18) 

27 36.09 10 kg/mDE
    in excellent agreement with the 

PLANK data (Planck Collaboration, 2013). 
Thus, at the present time, at 0z  , the observed density 

of dark energy interaction parameter of primary fermions 
is very close to the electromagnetic fine structure constant 

em  or equal to it. There are two possibilities: either the 
interaction of fermions has electromagnetic nature, or the 
equality 1

i em
    points to the existence of “shadow” or 

“mirror” long-range interactions, like the electromagnetic 
ones, for the charges of the shadow sector of matter, mani-
fests itself as a primary condensate of fermions, or dark 
energy. 

The density of the normal and superfluid systems of en-
ergy close to the Planck density, and dark energy is a 
small contribution to this density, making 12010 P

   at the 
present time, but in the grand unification epoch it was 

1210 P
  . Therefore formally the quantum field theory 

correctly estimates the true vacuum energy density as the 
Planck density, but it is the density of the superfluid sys-
tem, without making a direct contribution to the observed 
forms of energy, and therefore, into gravity. This contribu-
tion is made by only the energy of the system of fermions. 
If λ coincides with the em  or changed synchronously as a 
constant of shadow interaction, then it is possible to evalu-
ate the dynamics of changes of em    depending on the 
energy density in the early Universe. Let us consider the 
process of formation of modern values of dark energy in 
the hot early Universe. As we know from quantum elec-
trodynamics, the value of the electromagnetic fine struc-
ture constant is a function of the four-momentum 2Q : 

2
1 ln

3 2i em
e

Q
m

  
       

, (19) 

where em  is the electron mass, 2 /em e c    is the fine 
structure constant. Then, the effective density of dark en-
ergy is: 

2
1

1

5

2 ln
3 23 2

4
5 3

23 2

8
256

,
2256

em
e

em

DE
QN
m

N

eN

c
G

G e

c Q
mG e





           







   




 
  

  





 (20) 

where /Q kT c  is momentum of radiation quanta and 
matter in the early Universe: 

Thus, the density of dark energy as the binding energy 
of fermions is controlled by the density of radiation en-
ergy and substance. At the same time DE  reaches a 
minimum and becomes constant at 

22 eQc m c = 1.022 MeV. For energy GUT 
1510GUT  eV we have  
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1 1
0

0

( ) ( ) ln
2

i GUT
GUT

    
         

. (21) 

The law of variation of i  determines the dynamics of 
change in  . Before the start of transition to the super-
conducting state, with 1 0i

  , 0s   and  

2

1
4 (8 )n P

N PG t
   

 
. (22) 

In general  121 i
s P e

     . 

 
1

0

24

2 ( )3
0256

i

p GUT
DE

e





 

  
     


. (23) 

To determine the law of variation of 1
i
  we will look at 

some aspects of the Universe formation. If the Universe 
started from the Planck density 4~P PM , then up to the 
moment of the phase transition it expanded in vacuum-
like state. The scale factor a  as the radius of the Universe 
at the moment of transition from the vacuum-like in a hot 
state was a R   /H CMBR GUTR T T 

11/2 8 i
i Pt e

   , 
where /HR c H  is a modern value of the Hubble radius, 

CMBRT  is the CMB temperature. At the same time V  is a 
parameter for the phase transition. At the moment of the 
phase transition we can estimate the radius of the Universe 

UR , and accordingly the value 1
i
  depending on the 

value of the energy gap DE . For example, when 
4

DE    (246.3 GeV)4, 1
i
  73.1 and B GUTk T   

=1.35∙1015 GeV, then a  2.292 sm.  
Because dark energy is the only one of the components 

of the observable Universe, but it is comparable to other, 
so it is rightful to consider the energy density of the entire 
observable Universe as evolving dynamically changing 
difference of density of normal and superfluid fermion 
systems, i.e. being in a state of a phase transition with 
changing energy density. Then the density   can be 
identified with the critical density of the Universe. When 

2 2
0 02 3

3
8 4

F
c

N

mpH
G

     
  

 and Pm M , choose 

/ 4F Pp M c  , in order to the fermion velocity on the 
Fermi surface will be lower than the speed of light. Then 
the square of the dynamically changing energy gap deter-
mines the Hubble radius: 2 2

0 06H  . That means that the 
time parameter Ht  is a function of the occurring phase 
transition of type II, corresponding to the Universe evolu-
tion and the variable j : 

1
2 2 24 4 4

F

F F j

P P P
j

p b p b b

M M M

e e e e
  




    

  
 


. (24) 

From 1 10
0 1.4 10Ht H    years, 

1

8 j
H Pt t e

    

28
F j
b

Pt e


  , 1 1/ 2 137
jj F emb        at 0z  , where 

em  is the fine structure constant. 

The critical density corresponds to the Hubble parame-
ter with a value 0H   69.76 km/s∙Mpc is  

1

2

2
0

2

2 30 3

3 3 1
8 8 8

3 1 9.14 10 g/sm .
8 8

j

F

c
N N P

b

N P

H
G G t e
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  (25) 

This value c  is in good agreement with the PLANK 
results (Planck Collaboration, 2013). It should be noted 
that the proximity of the dark energy density value of the 
critical density of matter and generally can be explained 
by the proximity or the equality of the interaction parame-
ters at the present time. Such equality can be explained by 
the approximation of the various parameters i  to a single 
value, similar to the parameters behavior in the grand uni-
fication epoch: i j z em       . Thus, the observed 
dark energy and matter can be regarded as a set of quasi-
particles with energy of communication of primary fer-
mions. Therefore, the observed world can be seen as the 
difference between two energy levels of a fermion system, 
which density is close to the Planck density: 

43 / 8n P PM     , 4 2 23( ) / 8s n c P P jM M         
Thus, we can describe the observed critical density of 

the Universe as the difference between the densities of the 
superfluid and normal fermion systems, and this process is 
dynamic, providing the energy difference, which coin-
cides with the energy of the observable Universe. There-
fore, in the beginning we can start from the Planck den-
sity, when 0s  , to ( )nP s t GUT     and then to 

 2/1 j
s P e     . Thus, the energy density of the super-

fluid fermion systems can be increased from zero to a 
density close to the Planck density. 
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