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ABSTRACT. One of the main problems in the
study of system of equations of the gravitational lens,
is the computation of coordinates from the known
position of the source. In the process of computing
finds the solution of equations with two unknowns.
The problem is that, in general, there is no analytical
method that can find all of the roots (lens) of system
over the field of real numbers. In this connection, use
numerical methods like the method of tracing. For
the N -point gravitational lenses we have a system
of polynomial equations. The methods of algebraic
geometry, we transform the system to another system,
which splits into two equations. Each equation of the
transformed system is a polynomial in one variable.
Finding the roots of these equations is the standard
computing task.
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1. Introduction

According to the general theory of relativity, the
light beam, which passes close to a point source of grav-
ity (gravitational lens) at a distance ξ from it (in case
ξ ≫ rg) is deflected by an angle

α⃗ =
2rg
ξ2

ξ⃗ =
4GM

c2ξ2
ξ⃗, (1)

where rg – gravitational radius; M – mass point of
the lens; G – gravity constant; c – velocity of light
in vacuum. The detailed derivation of the formula (1)
can be found in many classic books (Blioch et al., 1989;
Weinberg, 1972; Landau et al., 1988). For N -point of
the gravitational lens, in the case of small tilt angles
have the following equation (Zakharov, 1997; Schneider
et al., 1999) in dimensionless variables:

y⃗ = x⃗−
∑
i

mi
x⃗− l⃗i∣∣∣x⃗− l⃗i

∣∣∣2 , (2)

where l⃗i – dimensionless radius vector of point masses

outside the lens, and the mass mi satisfy the relation∑
mi = 1.
The Equation (2) in coordinate form has the form of

system:
y1 = x1 −

N∑
i=1

mi
x1−ai

(x1−ai)
2+(x2−bi)

2

y2 = x2 −
N∑
i=1

mi
x2−bi

(x1−ai)
2+(x2−bi)

2

, (3)

where ai and bi are the coordinates of the radius-vector
l⃗i, i.e. l⃗i = (ai, bi).

2. Mathematical definitions and theorems

For conversion of system (3) we needs the following
definitions and theorems.
Definition 1. Let K – an arbitrary field of numbers,

and f(x), g(x) – polynomials of K[x] over this field.
The resultant R(f, g) of the polynomials f(x), g(x) is
called an element of K, which we have defined by the
formula:

R(f, g) ≡ am0 bn0
∏i=n

i=0

∏j=m

j=0
(αi − βi) , (4)

where αi, βi- the roots of polynomials, f(x) =∑i=n
i=0 aix

n−i and g(x) =
∑j=m

j=0 bjx
m−j , accordingly,

with the leading coefficients of the polynomials, such
that a0 ̸= 0, b0 ̸= 0.
Defenition 2. Matrix Sylvester for polynomials

f(x) =
∑i=n

i=0 aix
n−i and g(x) =

∑j=m
j=0 bjx

m−j is
called a square matrix S = S(f, g) of the order of n+m
elements of which are defined by sij ,

S = [sij ] =



a0 a1 a2 ... ...
a0 a1 a2 ...

... ... ...
an−1 an

b0 b1 b2 ... ...
b0 b1 b2 ...

... ... ...
bm−1 bm


,

(5)
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where the number of rows with coefficients ai is equal
to m = deg g(x), and the number of rows with equal
coefficients bj is equal to n = deg f(x).
The resultant and Sylvester matrix connects the fol-

lowing
Theorem 1. Let R(f, g) – the resultant of f and g,

and S(f, g) - they Sylvester matrix, then:

R(f, g) = detS(f, g) (6)

The proof of Theorem 1, see. eg, (Lang 1965, Van
Der Waerden 1971).
We have the following
Theorem 2. The polynomials f and g have a com-

mon root, if and only if,

R(f, g) = 0. (7)

The modern proof of Theorem 2 sees. Eg., (Lang,
1965; Van Der Waerden, 1971).
From Theorem 2 follow
Theorem 3. Let A = A(x1, x2) and B = B(x1, x2)

are polynomials of two variables x1 and x2. System of
equations {

A(x1, x2) = 0
B(x1, x2) = 0

, (8)

has a solution, if and only if, at least one of the results
Rx1(A,B), Rx2(A,B) is zero.
The proof of Theorem 3, see. Eg (Walker, 1950; Van

Der Waerden, 1971).
There is also
Theorem 4. The polynomials A = A(x1, x2) and

B = B(x1, x2) have a common component, if and only
if, at least one of the results, Rx1(A,B), Rx2(A,B) is
identically equal to zero.

3. The algorithm for constructing images for
N-point lens

Theorems 1-3 we use the algorithm for solving the
problem of calculating the coordinates of the image
points. The right parts the equations of system (3),
are rational functions of the variables x1 and x2. We
transform each equation of the system (3) in a polyno-
mial equation, and we obtain a system of equations:{

F1(x1, x2, y1) = 0
F2(x1, x2, y2) = 0

. (9)

We apply to the system (9) Theorem 4. Let’s see
has the common component the equations of system.
If there is a common component, we separate it. In this
case, the system (9) is divided into several sub-systems
with the equations without common components. If
there is no common components, we are using theorem
3, and we are eliminate from system (9) of the vari-
able x1, and then the variable x2. The two obtained

equations form a system

{
R1(x2, y1, y2) = 0
R2(x1, y1, y2) = 0

. (10)

System (10) from the system (9), but in general it
is not equivalent. The first equation of the system
is a polynomial in the variable x2. The second – a
polynomial in the variable x1. The variables y1 and
y2 we believe parameters. We compute the set of
roots of each of R1 and R2 polynomials and select
them to a subset of real roots. Determine the direct
multiplication of the sets of real roots of polynomials.
We check each pair of direct multiplication so that it
satisfies the system (9). This selection is completely
defines the set of solutions of this system. Thus, in
the first stage, a solution of (3) we are reduced to the
computation of roots of polynomials in one variable.
We achieve this by using analytical methods of classi-
cal algebraic geometry. In the second stage, we apply
approximate methods of calculation. The problem
is reduced to the computation of roots of polyno-
mials in one variable over the field of complex numbers.

4. The binary lens

The binary lens (in the case of N = 2) were stud-
ied in many works, see. Eg, (Schneider et al., 1999,
Schneider et al., 1986, Asada 2002, Cassan 2008, Witt
1990).To demonstrate the method, we consider the
two-point gravitational lens with equal masses m1 =
m2 = 1/2. Point masses are on the x – axis at a dis-
tance a from the origin to (Figure 1).

{
y1 = x1 − 1

2
x1−a

(x1−a)2+x2
2

− 1
2

x1+a
(x1+a)2+x2

2

y2 = x2 − 1
2

x2

(x1−a)2+x2
2
− 1

2
x2

(x1+a)2+x2
2

. (11)

In this case, the system (3) takes the form:We trans-
form the system (11) to (9) and we represent the poly-
nomials F1 and F2 in the lexicographical form in as-
cending powers of the variable x1. We have:



F1 = −y1(a4 + 2a2x2
2 + x4

2) + (a2 − x2
2+

+(a2 + x2
2)

2)x1 + 2y1(a
2 − x2

2)x
2
1+

+(2x2
2 − 1− 2a2)x3

1 − y1x
4
1 + x5

1,
F2 = (−a2x2 − x3

2 + (a2 + x2
2)

2(x2 − y2))−
−(x2 + 2(a2 − x2

2)(x2 − y2))x
2
1+

+(x2 − y2)x
4
1.

(12)

With the resultant R1 = R(F1, F2) exclude from
the system (12) variable x1. Sylvester matrix S1 =
S(F1, F2) is of the order degF1 + degF2 = 9. Since
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Figure 1: The binary gravitational lens.

R1 = detS1, we have:

R1(x2, y1, y2) = 4a4x2
2(a

2 + x2
2)(−a2y32−

−y22(1− a2 + 4a4 + 4a2y21 + 4a2y22)x2−
−y2(4a2 − 4a4 + 4a6 + y21 + 4a2y21−
−8a4y21 + 4a2y41 + 5y22 − 4a2y22+
+8a4y22 + 8a2y21y

2
2 + 4a2y42)x

2
2+

+(4a6 − 4a4 + y21 + 4a2y21 − 8a4y21+
+4a2y41 + y22 − 12a2y22 + 8a4y22 − 8y21y

2
2+

+8a2y21y
2
2 − 8y42 + 4a2y42)x

3
2−

−4y2(a4 − a2 − y21 − 2a2y21 + y41−
−y22 + 2a2y22 + 2y21y

2
2 + y42)x

4
2+

+4(a4 + 2a2(y22 − y21) + (y21 + y22)
2)x5

2).

(13)

Similarly calculate the resultant R2:

R2(x1, y1, y2) = 4a4x2
1(a

2 − x2
1)(−a2y31+

+y21(1 + a2 + 4a4 − 4a2y21 − 4a2y22)x1−
−y1(4a2 + 4a4 + 4a6 − 5y21 − 4a2y21−
−8a4y21 + 4a2y41 − y22 + 4a2y22+
+8a4y22 + 8a2y21y

2
2 + 4a2y42)x

2
1+

+(4a4 + 4a6 − y21 − 12a2y21 − 8a4y21+
+8y41 + 4a2y41 − y22 + 4a2y22 + 8a4y22+

+8y21y
2
2 + 8a2y21y

2
2 + 4a2y42)x

3
1+

+4y1(a
2 + a4 − y21 − 2a2y21 + y41−

−y22 + 2a2y22 + 2y21y
2
2 + y42)x

4
1−

−4(a4 − 2a2y21 + y41 + 2a2y22 + 2y21y
2
2 + y42)x

5
1).

(14)

If there are the coordinates y1 and y2 of source, coordi-
nates of images x1 and x2 can be calculated in several
ways.

The first method. Numerically solve the equations
R1(y1, y2, x2) = 0 and R2(y1, y2, x1) = 0. Deter-

mine the sets of their roots x
(i)
1 {x

(1)
1 , x

(2)
1 ...x

(p)
1 } and

x
(j)
2 {x

(1)
2 , x

(2)
2 ...x

(q)
2 }, respectively. Select a subsets of

real roots. Determine their direct multiplication of.

Couples (x
(i)
1 , x

(j)
2 ) – elements of direct multiplication,

substitute into the original system of equations (11).
Choose solutions that satisfy the system. It uniquely
identifies the set of solutions of the system (11).

The second method. Numerically solve one of the
equations (14), such as the first. Calculate the set

of its roots x
(j)
2 {x

(1)
2 , x

(2)
2 ...x

(q)
2 }. Select a subset of

real roots. Each of the real roots substitute into
the equation of system (11). Find the solutions

x
(i)
1 {x

(1)
1 , x

(2)
1 ...x

(p)
1 } that correspond to each of the

roots of x2.

5. Conclusions

In this article we offer a quasi-analytic method of
solution of the vector equation N -point gravitational
lens. The method consists of two main stages. Ana-
lytical stage, in which we reduce the problem to the
solution of systems of polynomial equations, which,
in turn, reduce to the problem of finding the roots
of polynomials in one variable. The numerical stage,
in which we calculate the roots of polynomials in one
variable. A complete solution we get when we separate
real solutions and we tested them. Thus, our method
is both more accurate and faster.
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