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ABSTRACT. We study the influence of boundaries
on chiral effects in hot dense relativistic spinor matter
in a strong magnetic field which is orthogonal to
the boundaries. The most general set of boundary
conditions ensuring the confinement of matter within
the boundaries is employed. We find that the chi-
ral magnetic effect disappears, whereas the chiral
separation effect stays on, becoming dependent on
temperature and on a choice of boundary conditions.
As temperature increases from zero to large values,
a stepped-shape behaviour of the chiral separation
effect as a function of chemical potential is changed
to a smooth one. A choice of the boundary condition
can facilitate either amplification or diminution of the
chiral separation effect; in particular, the effect can
persist even at zero chemical potential, if temperature
is finite. This points at a significant role of boundaries
for physical systems with hot dense magnetized
spinor matter, i.e. compact astrophysical objects
(neutron stars and magnetars), relativistic heavy-ion
collisions, novel materials known as the Dirac and
Weyl semimetals.
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1. Introduction

Properties of hot dense spinor matter in a strong
magnetic field are intensively studied during the last
decade. An interest to this subject is driven by di-
verse areas of contemporary physics, ranging from par-
ticle and astroparticle physics to cosmology and even
condensed-matter physics. Relativistic heavy-ion col-
lisions (Kharzeev D.E.: 2014), compact astrophysical
objects (neutron stars and magnetars) (Ferrario L.,
Melatos A., and Zrake J.: 2015), the early universe
(Tashiro H., Vachaspati T., and Vilenkin A.: 2012),
novel materials known as the Dirac and Weyl semimet-
als (Vafek O. and Vishwanath A.: 2014) are the main
physical systems where such studies are relevant. In
the case of temperature, chemical potential, and the in-
verse magnetic length exceeding considerably the mass
of a relativistic quantized spinor matter field, it has

been shown in theory (Metlitski M.A. and Zhitnitsky
A.R.: 2005; Fukushima K., Kharzeev D.E., and War-
ringa H.J.: 2008) that persistent and nondissipative
currents emerge in thermal equilibrium, resulting in a
variety of chiral effects in hot dense magnetized mat-
ter; see review in Miransky V.A. and Shovkovy L.A.:
2015, and references therein.

So far chiral effects were mostly considered in un-
bounded (infinite) matter, which may be relevant for
cosmological applications, perhaps. For all other appli-
cations (to particle, astroparticle, and condensed mat-
ter physics), an account has to be taken of the finite-
ness of physical systems, and the role of boundaries in
chiral effects in bounded matter has to be clearly ex-
posed. The concept of quantized matter fields which
are confined to bounded spatial regions is quite famil-
iar in the context of condensed matter physics: col-
lective excitations (e.g., spin waves and phonons) exist
only inside material samples and do not spread out-
side. Nevertheless, a quest for boundary conditions
ensuring the confinement of quantized matter was ini-
tiated in particle physics, in the context of a model
description of hadrons as bags containing quarks (Bo-
golioubov P.N.: 1968; Chodos A., Jaffe R.L., Johnson
K., Thorn C. B., and Weisskopf V.: 1974). Motivations
for a concrete form of the boundary condition may dif-
fer in detail, but the key point is that the boundary
condition has to forbid any flow of quark matter across
the boundary, see Johnson K.: 1975. However, from
this point of view, the bag boundary conditions pro-
posed in Bogolioubov P.N.: 1968, and in Chodos A.,
Jaffe R.L., Johnson K., Thorn C. B., and Weisskopf V.:
1974 are not the most general ones. It has been rather
recently realized that the most general boundary con-
dition ensuring the confinenent of relativistic quantized
spinor matter within a simply connected boundary in-
volves four arbitrary parameters (Akhmerov A.R. and
Beenakker C.W.J.: 2008; Al-Hashimi M.H. and Wiese
U.-J.: 2012), and the explicit form of such a condition
has been given (Sitenko Yu.A.: 2015; Sitenko Yu.A.
and Yushchenko S.A.: 2015; Sitenko Yu.A.: 2016a).
To study an impact of the background magnetic field
on confined matter, one has to choose the magnetic
field configuration with respect to the boundary sur-
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face. The primary interest is to understand the effect
of a boundary which is transverse to the magnetic field
strength lines. Then the simplest geometry is that of a
slab in the uniform magnetic field directed perpendic-
ular. It should be noted that such a geometry can be
realized in condensed matter physics by putting slices
of Dirac or Weyl semimetals in an external transverse
magnetic field. Note also that the slab geometry is
conventional in a setup for the Casimir effect (Casimir
H.B.G.: 1948); see review in Bordag M., G. L. Klim-
chitskaya G. L., Mohideen U., and Mostepanenko V.
M.: 2009.

As a first step toward the full theory of chiral
effects in bounded matter, the chiral effects in dense
magnetized ultrarelativistic spinor matter at zero
temperature in a slab were considered in publication
Gorbar E.V., Miransky V.A., Shovkovy I.A., and
Sukhachov P.O.: 2015, with the use of the bag bound-
ary condition of Bogolioubov P.N.: 1968. Our aim
is to extend the consideration to the case of nonzero
temperature and the most general boundary condition.

2. Thermal equilibrium for chiral spinor
matter

We start with the operator of the second-quantized
spinor field in a static background,

Ur,t)= Y e rNar+ Y e M) b,

Ex>0 E\<0
(1)

where df\ and ay (EJI\ and l;,\) are the spinor particle
(antiparticle) creation and destruction operators satis-
fying anticommutation relations,

[, aL,L = [b, BLL = (AIN), (2)

and (r|A) is the solution to the stationary Dirac equa-

tion,
(3)

H is the Dirac Hamiltonian, A is the set of parameters
(quantum numbers) specifying a one-particle state, E
is the energy of the state; wave functions (r|\) satisfy
the requirement of orthonormality

H (r|A) = Ex(r|]A),

/ ar (Alr) (r]X) = (AIN) (4)

Q

and completeness

D () (Ar) = 18(r —x); (5)

summation is over the whole set of states, and (Q is the
quantization volume.

Conventionally, the operators of dynamical variables
(physical observables) in second-quantized theory are

defined as bilinears of the fermion field operator (1).
One can define the fermion number operator,

A 1 Aua Ao
N=3 /di”r(qﬁ\p — ¢TIt
Q

TN 1
= Z {5&&,\ - blb,\ - §Sgn(E,\) ; (6)

and the energy (temporal component of the energy-
momentum vector) operator,

1 A o ~ A
PO = 5 /d3r(\IJTH\I/ — T HTIT)
Q

PPN 1
=D B (dlm +biox — 2) : (7)
where superscript T' denotes a transposition and sgn(u)
is the sign function [sgn(+u) = £1 at u > 0]. The av-

erage of operator U over the grand canonical ensemble
is defined as (see, e.g., Das A.: 1997)

) SpUexp |—(P° — uN)/T
<U>T,u B Sp exp [{(po _ MN)/T:|:| ’

where equilibrium temperature 7' is defined in the units
of the Boltzmann constant, chemical potential is de-
noted by u, and Sp denotes the trace or the sum over
the expectation values in the Fock state basis created
by operators in (2). Let us take operator U in the form

~ 1 /- ~ A ~
=3 (U778 — GG (9)
where T is an element of the Dirac-Clifford algebra.
The explicit form of U, P° and N in terms of the cre-
ation and destruction operators is inserted in (9); then
one obtains

<U>T7# = —%tr <r|Ttanh[(H — u[)(QT)*lHQ . (10)

where tr denotes the trace over spinor indices. We
are considering the quantized charged spinor field in
the background of a static uniform magnetic field with
strength B = 8 x A, where A is the vector potential of
the magnetic field. Assuming that the magnetic field is
strong (supercritical) and ultrarelativistic spinor mat-
ter is at high temperature and high density,

leB| >>m? T >>m, |u>>m, (11)
we shall neglect the mass of the spinor matter field,
putting m = 0 in the following. Thus the Dirac Hamil-
tonian takes form

H = —iy"~ - (8 —ieA), (12)
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where e is the charge of the matter field and natural
units 7 = ¢ = 1 are used. Owing to the presence of
chiral symmetry,

[H,~°]- =0, (13)

where 7% = —iy%919243 (79, 41, 42, and 43 are the
generating elements of the Dirac-Clifford algebra, and

5 is defined according to Okun L.B.: 1982), one can
introduce also the following average:

(O)r, =

where

Sp Uexp [*(PO - M5N5)/T]

Sp exp [—(I:’O — M5N5)/T}

;o (14)

N 1 A A A A
N® = 7/d3r(\IJT75\IJ — PTAATPITY - (15)

2
Q

is the axial charge and 5 is the chiral chemical poten-
tial. For operator U in the form of (9), one obtains

<U>T - —%tr (x| tanh[(H — u57°)(2T) " Y|r),
7/ ) (16)
Thus, there are two types of thermal averaging, when
chiral symmetry is present. For instance, one can de-
fine the vector current density as either an average over
the standard grand canonical ensemble,

1=,

or an average over the grand canonical ensemble with
the chiral chemical potential,

1= {0,

As we shall see, there is no contradiction between
these two different definitions of the same physical
quantity, since at least one of them results in zero.

, (17)
="y

(18)

=0y

3. Chiral effects in the unnbounded space

A solution to the Dirac equation in the background
of a static uniform magnetic field is well described in
the literature, see, e.g., Akhiezer A.I. and Berestetskij
V.B.: 1965. The one-particle energy spectrum in the
case of the massless spinor field is

Eng = twnk, Wnk =V 27’L|€B| + k2,
—o<k<oo, n=0,1,2,..., (19)

k is the value of the wave number vector along the
magnetic field, and n numerates the Landau levels. A
straightforward calculation of (18) with the use of the

explicit form of spinor wave functions of definite chi-
ralities immediately yields

J= <[A]>T7M5

whereas (17) turns out to be zero. Similarly, one can
calculate the axial charge density,

i B
J% = (0) _ Bl
T,p,p5 27T2 a

sinh[(p5 + 1) /T
cosh[(us + 1) /T] + cosh(y/2n|eB| + k2/T)

sinh[(us — p) /7]

eB

= —%Ms,

(20)
=707

T=95

oo

+ dk

>
o2

[
[

cosh[(us — p)/T] + cosh(y/2n|eB| + k2/T)
: . (21)
and the axial current density,
. B
J5E<U> ——%u. (22)
T, ’r:fyo’yrys 27T

Note that J (20) and J® (22) are known as the chi-
ral magnetic (Fukushima K., Kharzeev D.E., and War-
ringa H.J.: 2008) and chiral separation (Metlitski M.A.
and Zhitnitsky A.R.: 2005) effects, respectively. Only
the lowest Landau level (n = 0) contributes to (20)
and (22), and both effects are of topological origin, be-
ing related to a quantum anomaly, see Alekseev A.Y.,
Cheianov V.V., and Frohlich J.: 1998; Giovannini M.
and Shaposhnikov M.: 1998; Son D.T. and Zhitnitsky
A.R.: 2004; Kharzeev D.E., McLerran L.D., and War-

ringa H.J.: 2008; Basar G. and Dunne G.V.: 2013.
Defining the left and right current densities,
1
Jp=3 (J+J°) (23)
and .
In =3 (J-7%), (24)
as well as the left and right chemical potentials,
pr = p+ s (25)
and
[R =t — [5, (26)
one can rewright (20) and (22) as
eB
Jr = —RML (27)
and B
e
Jrn=—"—"—up. 2
R= MR (28)

Actually, the chiral magnetic effect was first discovered
in the form of (27) in Vilenkin A.: 1980 (with a missing
extra factor of 1/2).
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4. Chiral effects in a slab

To study an influence of a background magnetic field
on the properties of hot dense spinor matter, one has to
account for the fact that the realistic physical systems
are bounded. Our interest is in an effect of the static
magnetic field with strength lines which are orthogonal
to a boundary. Then, as was already noted, the sim-
plest geometry of a material sample is that of a straight
slab in the uniform magnetic field directed perpendic-

ular. The one-particle energy spectrum in this case is
[cf. (19)]

En = twp;, wp =4/2neB|+kF, n=0,1,2,...,
(29)
where the values of the wave number vector along the
magnetic field, k;, are to be determined by the bound-
ary condition.

The most general boundary condition ensuring the
confinement of relativistic spinor matter within a sim-
ply connected boundary is (see Sitenko Yu.A. and
Yushchenko S.A.: 2015; Sitenko Yu.A.: 2016a)

{I -0 [ei“""’s cos 6

+(v" coss + 4% sing) sin 6] ei“mo('y'n)}

XX(r) [reaq = 0, (30)
where n is the unit normal to surface 02 bounding
spatial region 2 and x(r) is the confined spinor matter
wave function, r € €2; matrices 7! and 42 in (30) are
chosen to obey condition

[y v ]y = [’72a v nly = [717 72]+ =0, (31)
and the boundary parameters in (30) are chosen to vary
as

(32)
The MIT bag boundary condition (Johnson K.: 1975),

(I +iy-n)x(r) ‘reaﬂ =0, (33)
is obtained from (30) at ¢ =0 =0, p = —7/2.

The boundary parameters in (30) can be interpreted
as the self-adjoint extension parameters. The self-
adjointness of the one-particle energy (Dirac Hamilto-
nian in the case of relativistic spinor matter) operator
in first-quantized theory is required by general prin-
ciples of comprehensibility and mathematical consis-
tency; see, e.g., Bonneau G., Faraut J., and Valent G.:
2001. To put it simply, a multiple action is well de-
fined for a self-adjoint operator only, allowing for the

construction of functions of the operator, such as re-
solvent, evolution, heat kernel and zeta-function oper-
ators, with further implications upon second quantiza-
tion.

In the case of a disconnected boundary consist-
ing of two simply connected components, 02 =
N | JIN(), there are in general eight boundary pa-
rameters: ¢, @y, 04, and ¢, corresponding to 9Q(*);
and ¢_, ¢_, 6_, and ¢_ corresponding to 9Q(). If
spatial region (2 has the form of a slab bounded by par-
allel planes, 9Q(T) and 9Q(~), separated by distance a,
then the boundary condition takes form

(1= K& ) x(r) |—says = 0, (34)
where
K& =40 [ei"oi”Y5 cos 64
+(7v" coscx 4+ y*sincy ) sin 64 | eEiPE7"Y" (35)

coordinates r = (z, y, z) are chosen in such a way that
z and y are tangential to the boundary, while z is nor-
mal to it, and the position of dQF) is identified with
z = +a/2. The confinement of matter inside the slab
means that the vector bilinear, xT(r)y°y*x(r), vanishes
at the slab boundaries,

XX () |omsyn = O, (36)
and this is ensured by condition (34). As to the ax-
ial bilinear, x'(r)y°y*y°x(r), it vanishes at the slab
boundaries,

X7 °X(1) Loayn = 0, (37)
in the case of #;, = 6_ = 7/2 only, that is due to
relation

(K& |0i:7r/2 ,7°]-=0. (38)

However, note that, as a massless spinor particle is re-
flected from an impenetrable boundary, its helicity is
flipped. Since the chirality equals plus or minus the
helicity, chiral symmetry has to be necessarily broken
by the confining boundary condition. Thus the case
of 4 = 0_ = 7/2 is not acceptable on the physical
grounds. Moreover, there is a symmetry with respect
to rotations around a normal to the slab, and the cases
differing by values of ¢; and ¢_ are physically indis-
tinguishable, since they are related by such a rotation.
The only way to avoid the unphysical degeneracy of
boundary conditions with different values of ¢, and ¢_
is to fix 6, = 6_ = 0. Then x'(r)y°y*~+°x(r) is non-
vanishing at the slab boundaries, and the boundary
condition takes form

{1 =7 exp [i (027" £ @27"7%) |} X(¥) [.—syp = 0.
(39)
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Condition (39) determines the spectrum of the wave
number vector in the z direction, k;. The requirement
that this spectrum be real and unambiguous yields con-
straint (see Sitenko Yu.A. and Yushchenko S.A.: 2015;
Sitenko Yu.A.: 2016a)

pr=p_=¢, Gr=0_=¢ (40)
then the k; spectrum is determined implicitly from re-
lation

k;sin ¢ cos(kia) + (E..; cos @ — mcos ) sin(ka) = 0,
(41)
where m is the mass of the spinor matter field and
E ; is the energy of the one-particle state. In the
case of the massless spinor matter field, m = 0, and
the background uniform magnetic field perpendicular
to the slab, B = (0,0, B), E._; takes the form of F,;
(29), and relation (41) is reduced to
ky sin @ cos(kia) + Eny cos ¢sin(kia) = 0, (42)
depending on one parameter only, although the bound-
ary condition depends on two parameters,

{I =7 exp [i(¢7” £ 27"7°) ]} x(1)]omtay2 = 0.
43)
Using the explicit form of standing waves with the k;
spectrum determined by (42), one can compute the av-
erages of type (8). As to the averages of type (14), they
cannot be defined, because the confining boundary con-
dition necessarily breaks chiral symmetry: standing
waves inside a slab are formed from counterpropagat-
ing waves of opposite chiralities. It is straightforward
to check the validity of relations

J=J%=0. (44)
Similarly, the components of the axial current density,
which are orthogonal to the direction of the magnetic
field, vanish as well,

J = Jv° = 0. (45)
As to the component of the axial current density, which
is along the magnetic field, only the lowest Landau level
(n = 0) contributes to it, and hence the z component
of the axial current density is

e DI RCLI B S AT

k>0 k>0

—% Z1+% > 1], (46)

£ >0 k>0

where

fi(k) = {e“@m/ T4 1] o 7 (47)

and the two last sums which are independent of tem-
perature and chemical potential correspond to the con-
tribution of the vacuum fluctuations. The calculation
of the sums over [ yields (see Sitenko Yu.A.: 2016b,
2016¢)

_eB

JZS _ =
2ma

X {Sgn(u)F <Iu|a +sgn(p) [¢ — sgn(@)m/2] ;Ta>

_% (¢ — sgn(@)W/Q]}v (48)
where
F(s;t) = %

1 T ; sin(2s)sinh(/t)
T o/d [cos(2s) + cosh(2v)][cosh(m/t) + cos(v/t)]

sinh {[arctan(tans)]/t}

. (4
+cosh[7r/(2t)] + cosh {[arctan(tans)]/t} (49)
In view of relation
1
Jim —F(|pla; Ta) = |ul/m, (50)

the case of a magnetic field filling the whole (infinite)
space (Metlitski M.A. and Zhitnitsky A.R.: 2005) is
obtained from (48) as a limiting case [cf. (22)],

7eB

lim J* = ——p.
s onzh

a—r 00

(51)

Unlike this unrealistic case, the realistic case of a mag-
netic field confined to a slab of finite width is temper-
ature dependent, see (48) and (49). In particular, we
get

e
y [Sgn(ﬂ) Hluaﬂtgn(u)so + o “@ﬂ
L4 ;sgn@)] (52)
and B
Jim J* = —5 gk (53)

here [u] denotes the integer part of quantity u (i.e. the
integer which is less than or equal to u), and ©(u) =
111 + sgn(u)] is the step function. As follows from
(48), the boundary condition that is parametrized by @
can serve as a source which is additional to the spinor
matter density: the contribution of the boundary to
the axial current effectively enhances or diminishes the
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contribution of the chemical potential. Because of the
boundary condition, the chiral separation effect can be
nonvanishing even at zero chemical potential,

eB

I =0 = —m{F(SZ’ —sgn(p)/2; Ta)

-2 1p- sgn(@)w/z]}; (54)

the latter vanishes in the limit of infinite temperature,

lim J*5|,—o = 0.
T—o0

(55)

The trivial boundary condition, ¢ = —m/2, yields spec-
trumk; = (I4+3)Z  (1=0,1,2,...), which is the same
in the setups of both bag models (Bogolioubov P.N.:
1968) and (Chodos A., Jaffe R.L., Johnson K., Thorn
C. B., and Weisskopf V.: 1974). The axial current
density at zero temperature for this case was obtained
in Gorbar E.V., Miransky V.A., Shovkovy L.A., and
Sukhachov P.O.: 2015,

z5 . BB |lu|a 1
I |10, gemy = *%Sgn(ﬂ) [{W ol (56)
The ”bosonic-type” spectrum, k; = [% (Il =
0,1,2,...), is yielded by ¢ = 0, and, due to the con-
tribution of the vacuum fluctuations, the axial current
density is continuous at this point,

lim J?® = lim J?°.
p—04 p—0_

(57)

5. Summary and discussion

We have considered the influence of boundaries on
chiral effects in hot dense magnetized relativistic spinor
matter. An issue of the confining boundary condition
plays the key role in this study. In the absence of
boundaries there exist the chiral magnetic effect which
is exhibited by the nondissipative vector current along
the magnetic field, see (20), and the chiral separation
effect which is exhibited by the nondissipative axial
current in the same direction, see (22); both currents
are temperature independent. As boundaries are in-
troduced and the matter volume is shrinked to a slab
which is transverse to the magnetic field, the fate of
these currents is different. The axial current stays on,
becoming dependent on temperature and on a choice of
boundary conditions, see (48) and (49); as temperature
increases from zero to large values, a stepped-shape
behaviour of the axial current density as a function
of chemical potential is changed to a smooth one, see
(52) and (53). The vector current, as well as the axial
charge, is extinct, see (44), because of boundary con-
dition (36). Thus, the chiral magnetic effect in a slab
is eliminated by the confining boundary condition.

Magnetic fields of the order of the QCD energy scale
squared can be produced in the quark-gluon plasma
created in relativistic heavy-ion collisions (as a result
of electric currents from the colliding charged ions);
see Kharzeev D.E.: 2014. Magnetic fields up to 10%°
Gauss may exist in some compact stars (magnetars);
see Glendenning N.K.: 2000; Turola R, Zane S., and
Watts A.L.: 2015. Even stronger fields are generated
in progenitor magnetars during the core collapse after
the supernovae explosion (Ferrario L., Melatos A., and
Zrake J.: 2015). It has been claimed that the chiral
magnetic effect (20) plays a significant role in these pro-
cesses; see Boyarsky A., Ruchayskiy O., and Shaposh-
nikov M.: 2012; Sigl G. and Leite N.: 2016. Another
claim is that the chiral magnetic effect is responsible
for a solution of the problem of large kicks of pulsars
(Charbonneau J. and Zhitnitsky A.: 2010; Charbon-
neau J., Hoffman, and Heyl J.: 2010). The latter prob-
lem is that pulsars exhibit rapid proper motion with
velocities ranging from 100 to 1600 km/s, and about
15% of pulsars has velocities above 1000 km/s (Arzou-
manian Z., Chernoff D.F.; and Cordes J.M.: 2002).
Large velocities are unambiguously confirmed with the
model independent measurement of pulsar B1505+55
moving at 10837$0% km/s (Chatterjee S., Vlemmings
W.H.T., Brisken W.F. et al: 2005). Persistent topo-
logical current (20) has been proposed in the capacity
of an engine which pushes a fast pulsar like a rocket
(Charbonneau J. and Zhitnitsky A.: 2010).

However, if finiteness of a physical system in the
direction of the magnetic field is taken into account,
then the topological vector current, as well as the
axial charge, disappears, that is due to the boundary
condition confining spinor (electron, quark, or nu-
cleon) matter inside the magnetar. This circumstance
changes essentially the whole picture of the large
kick mechanism. The only necessary ingredients are
a strong magnetic field and the high density of the
relativistic charged spinor matter in the core of a
compact star (magnetar or protomagnetar). Such an
environment develops axial currents with the specific
temperature dependence which is almost stepped-
shape in the case of degenerate matter (T' < |u|) and
a somewhat smooth otherwise, see (48), (49), (52),
and (53). The pertinent carriers of these currents are
electrons in the case of the nuclear matter, or electrons
and quarks in the case of the deconfined quark matter
(in supposed quark stars). Since the currents are
persistent, they are capable of delivering the asym-
metry of neutrinos created by weak interaction from
the interior to the surface without dissipation, thus
producing a proper motion of the star as a whole. The
details of the mechanism are yet to be elaborated.
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