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ABSTRACT. As it has been recently demonstrated,
the mathematical model with the hyperbolic space
(or, in other words, with the negative spatial cur-
vature) is the most appropriate one for describing
the inhomogeneous Universe at late stages of its
evolution in the framework of the theory of scalar
perturbations. In this model we develop a dynamic
approach and investigate nonrelativistic motion of
two, three and even more cosmic bodies against the
cosmological background, perturbed locally by density
inhomogeneities (namely, galaxies). For arbitrary
initial conditions, we get solutions of equations of
motion (trajectories), demonstrating the most impor-
tant features of cosmological expansion, only slightly
restrained by gravitational attraction. We use our
methods for indirect observations of dark energy
in the Local Group, analyzing the relative motion
of the Milky Way and Andromeda galaxies. The
numerical estimation of the time before their collision
is obtained. Besides that we consider the Hubble flows
anisotropy caused by the non-point mass distribution.

Key words: inhomogeneous Universe, Local Group,
Hubble flows.

1. Introduction

In this paper we consider the Universe at the late
stages of its evolution deep inside of the cell of unifor-
mity. On these scales (less than 300Mpc) the hydro-
dynamic approach of the cosmic bodies motion descrip-
tion is inappropriate, because the space is filled with
discrete structures, such as galaxies, clusters of galax-
ies. The background metrics is Friedmann-Robertson-
Walker (FRW) metrics:

ds* = a® (dn® — vagdxadxﬁ) =
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where K = —1,0,+1 for open, flat and closed Uni-
verses, respectively. This isotropic and homogeneous
background is perturbed by the discrete mass sources.

When analyzing the motion of non-relativistic ob-
jects we can write the expression for the perturbed
metrics this way:
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For every i—th mass of the system the Lagrange
function can be written:
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where ¢; is the gravitational potential, and v; is the
comoving peculiar velocity. The gravitational potential
is taken in the Newtonian approximation:
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Based on these expressions, we can analyze the
motion of objects of arbitrary mass systems.

2. Cosmological ”molecular” dynamics

In this section we will apply our mechanical approach
to mass systems of different number of particles. We
can build the system of Langrange equations. Adding
the known initial conditions we can solve such systems
numerically and analyze the trajectories of the cosmic
bodies” motion in the case of the background cosmo-
logical receiding.

To start with, we consider the system of three test
particles. The solution of the corresponding Lagrange
equations can be visualized on the scheme.

Let us suppose the following initial conditions:
ma=mp=mc =mand Xal;_o =0, Yal;_g = —1.5,
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Figure 1: Dynamics of three points motion.

XBli—g = 1.5, YBlj—g = 0, Xclj—g = =15 Yol =
1.5, dXi/dﬂ{:O =0, in/dt‘g:O =0.

The red triangle with vertices (0,—1.5), (1.5,0) and

(—1.5,1.5) (see Figure 1, left part) showes the ini-
tial position of particles (at £ = 0). Smooth (where
both cosmological expansion and gravitational attrac-
tion are taken into account) and dashed (only cosmo-
logical expansion) green triangles illustrate the position
of particles at ¢ = 1, blue ones — at ¢ = 2. Two dif-
ferent peculiarities of the motion can be seen on the
above mentioned diagrams: smooth triangles are en-
closed in the corresponding dashed triangles, meaning
that gravitational interaction inhibits expansion. The
second feature is that in the case of attraction absence
the points A and B, located on the axes of coordinates,
recede along the axes (point C recedes along the direc-
tion of its initial radius vector). This fact is confirmed
by the constructed dashed triangles; in the presence of
attraction the points do not recede along the coordi-
nate axes (or along the initial radius vectors), which is
confirmed by the smooth triangles.
_If we change the initial conditions for the following
Yalimo = =1, Xli=o = 1, Xcli=o = —1 and Ye[j—o =
1, the test points will get closer to each other at t = 0,
and the diagrams will take the form of the right part
of Figure 1.:

There is a distinction in kind between these two sit-
uations. Gravitational attraction of points A and B
predominate cosmological expansion between them, so
they start to close in and will collide in the future.
At the same time point C' becomes gravitationally un-
bound, so it starts to move off.

The same procedure can be applied to the case of
four test masses.

We make an assumption that my = mp = me =
mp = m and dX;/dt|;_, = 0, dYi/dt|;_, = 0. On
the left side of the diagram (see Figure 2) at £ = 0
the points form the square with verteces (1,1), (1, —1),
(—1,-1) and (—1,1), on the right side of the diagram —
with verteces (0.75,0.75), (0.75, —0.75), (—=0.75, —0.75)
and (—0.75,0.75).

The squares can be rebuilt with the different initial
conditions.

Figure 3: Dynamics of four points with initial non-zero
velocities.

In this case the test points have the initial non-zero
velocities. On the left side of the diagram (srr Figure
3) the points form the square with verteces (1.5, 1.5),
(1.5,—1.5), (~1.5,—1.5) and (—15,1.5) at £ = 0,
their velocities are (0,—1), (—1,0), (0,1) and (1,0)
correspondingly, on the right side of the diagram
the verteces’ coordinates are (0.5,0.5), (0.5,—0.5),
(—0.5,—0.5) and (—0.5,0.5), velocities take the fol-
lowing values: (0,—0.25), (—0.25,0), (0,0.25) and
(0.25,0).

3. The collision between the Milky Way and
Andromeda

Besides the illustrative examples we can apply our
approach to some real mass systems. Omne of the
most convenient and informative system of gravitat-
ing sources we can observe and analyze is the Lo-
cal Group containing out galaxy, the Milky Way, An-
dromeda galaxy and some dwarf galaxies. Building
the system of Lagrange equations for the system of
two bodies, particularly, for M31 and M33 galaxies, we
can describe the dynamics of the Milky Way and An-
dromeda collision and obtain the numerical estimation
of the time before their collision. In the centre-of-mass
system we can get the equation of motion in the fol-
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lowing form:

Q

i ma+mp M?
L=-Gy 72 +/1,2L3+EL

where L is the absolute value of the distance between
the galaxies’ centres.

The following plot illustrates the dynamics of the
galaxies’ approach:
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Figure 4: Dynamics of The Milky Way and Andromeda
galaxies approach.

The collision of the Milky Way (of the mass
10*2 mg) and Andromeda (of the mass 1.6 x 102 mg),
located on the ”physical” distance of 0.78 Mpc at
the present time and approaching with the ”physical”
velocity 120 km/s, will occure in 0.2670 of Hubble
time, i.e. 3.68 billion years. Without the gravitational
attraction this collision will occure in 0.48 of Hubble
time, i.e. 6.6 billion years. On the contrary, without
taking into account the cosmological expansion, the
collision will occur in 0.2636 of Hubble time, i.e. 3.63
billion years. Relative deviation of this estimation
from the previous one is about 1,5 percent.

4. Hubble flow anisotropy

Dwarf galaxies in the Local Group form Hubble flows
around the massive giant galaxies, the Milky Way and
Andromeda. But the distance between these galaxies
is significant enough to cause the flows anisotropy. We
can consider the system of these two gravitating masses
and analyze the acceleration of the test bodies in the
resulting gravitational field.

We have built the 3D plot of the acceleration (see
Figure 5). At the fixed moment of time it illustrates the
spatial distribution of the acceleration value. Gravitat-
ing masses, the Milky Way and Andromeda galaxies,
are placed in the centres of the plot peaks.

Besides that, we can visualize the localization
of the zero-acceleration points (see Figure 6).
Analysis indicates that there are no surfaces of zero-
acceleration, but only the finite number of points of
zero-acceleration. The yellow line on the plot shows
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Figure 5: 3D-plot of the acceleration value in the Local
Group.

the lines of the zero x-component of acceleration, the
green line shows the line of the zero y-component of
acceleration. Points of their intersection define the
points of zero acceleration. Black points on the plot
indicate the positions of the gravitating masses.
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Figure 6: Points of the zero acceleration.
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