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ABSTRACT. The eigen frequencies of a massless
scalar field in the space-time of the Reissner-Nordström
singularity are studied by using the WKB approxima-
tion and by numerical integration of the wave equation.
Both these approaches indicate the existence of long
living states for the singularity charge-to-mass ratios
being close enough to the extremal value Q/M = 1.
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1. Introduction

The Reissner-Nordström (RN) solution describes elec-
trovacuum in general relativity. If the electric charge
exceeds the central mass, Q > M , this solution cor-
responds to a naked singularity. Quantum excitations
on the naked RN geometry have recently attracted con-
siderable attention; in particular, quasinormal modes
(QNMs) of the massless scalar field were calculated
[Chirenti]. On the other hand, it was shown [Gladush]
that metastable bound states (MBSs) with the longer
live-times may also exist in the same case.
The purpose of this work is to compare the frequen-

cies (energies) of the different scalar field excitations
that emerge on the naked RN background among them-
selves and with the frequency extracted from numerical
evaluation of probe signal propagation.

2. Wave equation and effective potential

Consider the massless Klein-Gordon equation �ψ = 0
in the external RN geometry

ds2 = Fdt2 − F−1dr2 − r2dσ2,

F = 1− 2M

r
+
Q2

r2
, dσ2 = dθ2 + sin2 θdφ2. (1)

Introducing the tortoise coordinate x by dx = F−1dr
and seeking for the solution with angular variables sep-
arated, ψ = exp(−iωt)Ylm(θ, φ)ϕ(x)/r, one obtains

d2ϕ

dx2
+ [ω2 − V(r(x))]ϕ = 0,

V(r(x)) =
[
l(l + 1)

r2(x)
+

2M

r3(x)
− 2Q2

r4(x)

]
· F (r(x)). (2)

To establish possible types of the solutions, one in-
spects the shape of the effective potential V(r). It is
shown [Chirenti] that there are essentially two differ-
ent cases: (i) for Q/M < (Q/M)cr, V(r) has one max-
imum, (ii) for Q/M > (Q/M)cr, V(r) has 3 extrema,
one smaller ”outer” maximum, one ”inner” maximum
and minimum in the potential valley between them.
Here the critical value (Q/M)cr =1.048, 1.056, 1.059,...
for l =0,1,2,... It tends to (Q/M)cr =

√
9/8 ≈ 1.061

when l → ∞ [Chirenti]. In Fig. 1 V(r) is plotted to
illustrate those two cases. Since the dependence r(x)
is monotonous the plot of V versus x has similar shape.

Figure 1: Effective potential V(r) for l = 1 andM = 1,
Q = 1.01 (solid line) andM = 1, Q = 1.1 (dashed line).

3. Spectrum via WKB approximation

The above suggests that apart from the scattering
states there may be two different types of the quasis-
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tationary states, namely, QNMs near the top of one of
the effective potential peaks and MBSs in the potential
valley between peaks.
The QNM spectrum of the problem in the WKB

approximation reads as [Chirenti]

ω =
√
V(rmax)−i(n+1/2)F (rmax)

√
−V ′′(rmax)

2V(rmax)
(3)

with rmax being the position of the ”outer” maximum,
n being the excitation number and the prime denoting
the derivative with respect to r.
The WKB approximation for the eigen frequencies

of the MBSs has been developed in [Gladush] by ap-
plying the conventional approach [Landau] to the wave
equation rewritten in terms of the areal coordinate r

y′′ +
1

F 2

(
ω2 − V (r)

)
y = 0 (4)

where y =
√
Fϕ(r) and V (r) = V(r) − (2M/r3 −

2Q2/r4)F + (Q2 −M2)/r4. The new effective poten-
tial V (r) goes very closely to V(r) except for a small
region near the origin. Also V (r) has a potential val-
ley behind a low peak provided that 1 < Q/M <√
(8 + 9l(l + 1))/(8 + 8l(l + 1)).
Defining quasiclassical momenta k(r) and κ(r) for

the classically allowed and forbidden regions respec-
tively by

k(r) =
1

F

√
ω2 − V (r), κ(r) =

1

F

√
V (r)− ω2, (5)

one can write down the Bohr-Sommerfeld formula∫ r2

r1

1

F

√
ω2
R − V(r)dr = π(n+ 1/2) (6)

that determines the real part ωR of the frequency ω of
the MBS. Here r1,2 are the turning points at the ends
of the V (r) potential valley.
For the imaginary part of ω, the Gamow-type for-

mula has been derived [Gladush]

ωI =

[
4ωR

∫ r2

r1

dr

F 2k(r)

]−1

e
−2

∫ r3

r2

κ(r)dx
, (7)

which is valid if the forbidden region (r2, r3) (potential
barrier represented by the peak of V (r)) is nearly im-
penetrable. It means that the calculated value of ωI

has to obey the condition |ωI | ≪ ωR.
For the sake of comparison, another approximation

can be made. Since the main contribution to ωR comes
from the region in vicinity of the minimum rmin of
the potential, one can expand V(r) in powers of (r −
rmin). On substituting this into wave equation (2) and
retaining only the quadratic term, the problem reduces
to the harmonic oscillator one with the spectrum

ω2
R = V(rmin) + (n+ 1/2)F (rmin)

√
2V ′′(rmin). (8)

The exponentially small decay width ωI vanishes in
this approximation.
Equation (8) is to be compared with the QNM spec-

trum (3). One makes sure that the MBS frequencies
are indeed concentrated near the bottom of the po-
tential valley whereas the QNMs frequencies near the
potential peak.

4. Probe signal propagation

Since the spectrum of the system contains the states
of different types and with different frequencies, it is
tempting to explore what is the frequency that domi-
nates in the propagation of an ”arbitrary” probe signal.
To this end, the numerical method [Gundlach] will be

employed that is based on treating the Klein-Gordon
equation in terms of the light-cone coordinates u = t−x
and v = t + x. For the field ψ = Ylm(θ, φ)Φ(u, v)/r,
one gets (

4
∂2

∂u∂v
+ V(u, v)

)
Φ(u, v) = 0. (9)

This is simply discretized on a (u, v) grid as

Φ(N) = Φ(W ) + Φ(E)− Φ(S)−

− h2

8
V(S) (Φ(W ) + Φ(E)) +O(h4) (10)

where the points N, S, E and W form a rectangle with
relative positions indicated by the points of the com-
pass (see Fig. 2), and h is the integration step, so that

∆u = uN − uE = h, ∆v = vN − vW = h. (11)

Figure 2: Numerical grid used for integration.

The boundary conditions are chosen as follows

Φ(r = 0, t) = Φ(u, v = u+ 2x(r = 0)) = 0,

Φ(u = 0, v) = e−
(v−vc)2

2σ2 . (12)
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This amounts to the Dirichlet condition in the origin
and the data on the u = 0 line modelling an ”arbitrary”
initial signal to be propagated.
Starting from these null data depicted by filled cir-

cles in Fig. 2, integration proceeds to the ”north” and
the field in the points depicted by empty circles is cal-
culated according to algorithm (10).

5. Numerical results

Calculations were made for the case of Q/M <
(Q/M)cr because for Q/M > (Q/M)cr it is argued
[Chirenti] that there are no low-damped QNMs at least
in the l ≫ 1 limit and the MBSs are absent too
[Gladush].
The QNM spectrum was computed according to for-

mula (3) whereas the MBS spectrum was evaluated by
means of formulae (6) and (7). It should be noticed
that since the depth and the width of the potential
valley are finite, the number of the MBSs is limited.
In Table 2 the first QNM frequencies calculated us-

ing the values Q = 1.01, M = 1 are presented.

Table 1: QNM frequencies on the naked RN back-
ground with Q = 1.01, M = 1.

l = 0
n = 0 0.224344− i 0.092955

l = 1
n = 0 0.420128− i 0.088186

l = 2
n = 0 0.656772− i 0.087090

For comparison, the frequencies of all the existing
MBSs with l = 1, 2 (there are no l = 0 states) calcu-
lated with the same parameters are listed in Table 2.

Table 2: Frequencies of the MBSs on the naked RN
background with Q = 1.01, M = 1.

l = 1
n = 0 0.294636− i 0.263× 10−3

l = 2
n = 0 0.423194− i 0.164× 10−5

n = 1 0.537046− i 0.227× 10−3

The striking difference between Tables 1 and 2 is
that the MBSs have much smaller decay widths and
thus are much more long living than the QNMs. This is
because the MBSs are concentrated near the bottom of
the potential valley and have to penetrate the potential
barrier in order to decay.
Using the same parameters, the propagation of the

probe signal (12) with vc = 1 and σ = 1 was computed
via scheme (10). In Figs. 3 and 4 the time evolution
of the field Φl=0(x, t) and Φl=1(x, t) at given x = 10 is
shown. The plotted data were further approximated by
the least-squares method to the single mode Φapp(t) =
Ae−αt sin(Ωt+β) in order to extract the dominant fre-
quency. The results are Ω−iα = 0.2015−i 0.552×10−2

for l = 0 and Ω − iα = 0.3013 − i 0.223 × 10−3 for
l = 1. The last value is remarkably close to the MBS
frequency with l = 1 and n = 0 in Table 2.
Thus the results of both the numerical integration

and the WKB approximation indicate that the scalar
field on the naked RN background possesses long living
excitations. These are associated with the states lying
near the bottom of the effective potential valley.

Figure 3: Φ(x = 10, t) vs. t for Q = 1.01, M = 1 and
l = 0. The circles depict the result of integration, the
curve is the least-squares single-mode approximation.

Figure 4: The same as Fig. 3 for l = 1.
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