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ABSTRACT. A program WWZ is introduced, which real-

izes the wavelet analysis using an improved modification of 
the algorithm of the Morlet wavelet for a general case of ir-
regularly spaced data, which is typical for the databases 
available in virtual observatories. Contrary to the well-known 
analogs, working with regularly spaced (equidistant in time) 
arguments, we have implemented an improved algorithm 
presented by Andronov, (1998KFNT...14..490A, 
1999sss..conf...57A), which significantly increases the sig-
nal-to-noise ratio. The program has been used to study semi-
regular pulsating variable stars (U Del et al.), but can be used 
for the analysis of signals of any nature. 
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One of the main directions of modern astrophysics is 

the study of variable stars. Specificity of astronomical 
observation is that in many cases the times at which the 
observation are obtained, are irregularly spaced. This is 
characteristic to collections of photographic negatives 
"Sky Patrol", available in a variety of observatories, as 
well as to more modern CCD sky surveys. Such observa-
tions are sometimes available through the Internet and 
included in national and international projects "Virtual 
Observatory". In Ukraine there are programs VIRGO 
(Virtual X-ray and gamma-ray observatory) and UkrVO 
(Ukrainian Virtual Observatory (Vavilova et al. 2012)). 

Wavelet analysis is a method of investigating changes 
in the period of signals that are not strong periodic, but it 
is has sense to introduce “instantaneous” values of the 
“period” or “cycle length”. In astronomy, such signals are 
called "quasi-periodic oscillations" (QPO) and are com-
mon to many types of variable stars – low-mass X-ray 
binaries, cataclysmic and symbiotic systems, semi-regular 
pulsating stars etc. 

Mathematical foundations of the theory of wavelets are 
presented e.g. in the monographs by Daubechies (1992) and 
Vitjazev (2001) and reviews (e.g. Astafieva 1996). For the 
time series analysis, often is used the Morlet wavelet, which 
is based on a combination of the Fourier transform with the 
weight function being proportional to the Gaussian function. 
This conversion is included in the popular software, e.g. Mat-
Lab, SciLab. This algorithm allows to analyze only the sig-
nals, which are equally spaced in time, i.e. tk=ti+(k-i)Δt, 

where is tk is argument (typically time) of the kth observa-
tional point and Δt is step (discretization in time). So for as-
tronomical time series, Szatmary et al. (1994) have proposed 
to used simplified formulae, just changing integrals to sums 
on all observations. 

As for the irregularly spaced time series, the basic func-
tions do not satisfy conditions of orthogonality, the sim-
plified formulas lead to a dependence of the 2D test func-
tion on the origin of the signal (i.e., its mean value), thus 
depriving the analysis of the physical meaning. Foster 
(1996) proposed to use the method of least squares with 
additional weights, and has introduced the test function 
«WWZ». A detailed analysis of the statistical properties of 
this and three other test functions was given by Andronov 
(1998, 1999), which is a special particular case of using 
arbitrary basic functions fa(z) and the weight (filter) func-
tions w (z) (Andronov 1997).  

The approximation may be written in a form: 
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 Here xc is a smoothed value of a function which depends 
on the trial time t, on a "shift” t0 and a “scale” (period) P; 
z = (t-t0)/P, Cα(t0,P) – the coefficients of expansion of the 
local signal on basic functions fα(z), and m – the order of 
the model. 

For the „least squares extension” of the Morlet wavelet, 
f1(z)= 1, f2(z)=cos(2πz), f3(z)=sin(2πz), m = 3 . The weight 
function w(z) = exp(-cz2) is the Gaussian function, where c 
characterizes the width of the smoothing filter. When c=0, 
w(z)=1, and we have a global approximation of the sine 
wave. When c→∞, the filter function decays very quickly, 
and one obtains an asymptotic approximation of the local 
polynomial of degree 2, which corresponds to the method 
of running parabolae (Andronov, 1990, 1997). For appli-
cations, the most commonly used is an intermediate value 
c=1/80 ≈ 1/8π2. In the case of insufficient data, the values 
of c may be decreased by a factor of 4 (corresponding to 
twice larger time resolution and twice smaller period reso-
lution). ). A comparison of results of the wavelet analysis 
for different values of c was presented also by Chinarova 
(2010) for the semi-regular variable RU And. Also, as a 
weighting function, one may use a local function  
w(z)=(1-z2)2 for |z|< 1 (Andronov, 1990, 1997). 

26 Odessa Astronomical Publications, vol. 26/1 (2013)

mailto:il-a%20@%20mail.ru


 

 
 
Figure 1: Screenshot of the program WWZ. From top to bottom: light curve of the model signal with rapidly changing 
period; the wavelet map (the dependence of the test function of time and of the logarithm of the period); the skeleton of 
the wavelet map (time dependence of the values of the period, the corresponding local peaks are highlighted in red 
peaks above a critical value equal to half of the maximum, and green – above the "threshold of detection", adopted at 3; 
thick black line indicates the position of the maximum for this shift ); the cross-section of the wavelet map in time for a 
fixed period. Right: blue marks a cross-section of the wavelet map at a fixed time (local periodogram), red shows the 
averaged periodogram, and green – the maximum value of the periodogram for a fixed period ant different shift. 
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Figure 2: Screenshot WWZ for semiregular pulsating star U Delphini (similar to Fig.1). From top to bottom : light curve 
(the dependence of magnitude on the time in the Julian dates); the wavelet map; the skeleton of the wavelet map; the 
cross-section of the wavelet map in time for a fixed period. Right: blue markes a cross-section of the wavelet map at a 
fixed time (local periodogram) , red shows the averaged periodogram, and green – the maximum value of the periodo-
gram for a fixed period. 
 
 

We had developed a program to evaluate few test func-
tions: r – semi-amplitude of oscillations, S – the ratio of 
the weighted signal variance to the total variance (often 
denoted in other mathematical packages through r2 – the 
square of the correlation coefficient between the observed 
and smoothed values, i.e. the same letter r has another 
meaning), and WWZ – the "signal/noise” ratio. 

As an illustration, we present the results obtained using 
our program for one of the semi-regular pulsating stars – 
U Delphini. A separate study of this star using various 
methods was presented by Andronov and Chinarova 
(2012). The original observations were published in the 
database of the French Association of Variable Star Ob-
servers “AFOEV”, which is the precursor of modern data-
bases of virtual observatories. The diagrams are shown in 
Fig. 1 for the model signal with a periodic modulation of 
the fundamental period and in Fig. 2 for U Delphini.  

The program has been named WWZ, as one of the calcu-
lated test functions. Unlike previously worked analog (in 
the computer language Fortran, in text mode), the program 
WWZ was written in Object Pascal, and has a graphical 
interface and the ability to visualize both the original light 
curve and the test functions F(t0,P) (WWZ, S and r), which 
depend on time (shift) t0 and period (scale) P.  

The graphic representation of the 2D dependence of the 
test function F(t0,P) is called “a wavelet map”. 

In addition, the program displays a "skeleton" – the time 
(t0) dependence of the values of the periods corresponding 
to the local peaks at the wavelet map for a fixed t0. Differ-
ent colors show the peaks above and below the limit value 
Fmax(t0)=maxP(F(t0,P)), to facilitate the visual perception of 
the "skeleton". In the case of a constant period(s) "skeleton" 
should appear as a horizontal line(s). However, due to ir-
regular spacing in time of the observations, the lines at the 
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"skeleton" are apparently short or inclined. It also demon-
strates the falsity of the respective peaks. 

For convenience of the study of changes of the signifi-
cance of different periods, we introduce a "cut mode ": the 
horizontal (time cross-section, P=const) and vertical (pe-
riod cross-section, t0=const), where the point (t0,P) is cho-
sen by a mouse click. Corresponding two images are dis-
played below the "skeleton" and right from the wavelet 
map. For comparison, the two "wavelet periodograms" 
(also called "wavelet scalegrams”) are shown – an average 
(shown in red) and "maximum" (for all time points within 
a “cut”). It should be noted, that, for small periods, the 
"maximum" value is many times greater than the average. 
This is due to the effective reduction of the number of 
points used for smoothing in the formula (1) and a corre-
sponding increase in the scatter of the test function. De-
tailed mathematical description of the statistical properties 
was presented by Andronov (1998).  

Because the relative widths of peaks at the scalegrams 
used in the wavelet analysis is substantially constant (in 
contrast to a classical periodogram, where the width of 
peaks is constant in frequency), instead of the period it is 
reasonable to use the logarithm of the period.  

The range of periods is selected in accordance with a time 
variability of stars of corresponding types. For semiregular 
stars (including U Delphini), we used a range of 1.5 ≤ lgP ≤ 
4. For stars with more rapid changes of brightness, the range 
is moved from seconds to about an hour.  

The format of the input files for the described program: 
the light curve presented in two columns (ti, xi), where ti = 
HJD- 2400000 – the time in Julian days and xi – stellar 
magnitude (or, alternatively, the intensity) of the object. 
Output file format used by 2. In the “full” format, the output 
is: the period P, the shift t0 and test functions WWZ, S, r. 

In the program, there are few restrictions for a case of 
“bad coverage” of the interval of smoothing by observa-
tions. E.g. there must be points after and before the shift t0 
and the effective number of observations should exceed 3. 
Otherwise the values of all the functions are set to zero. In 
this case, the wavelet map displays the white field.  

For example, Fig. 2 shows that in the intervals, where 
there are no observations, the values are displayed only 
for large values of the period. That is, where the smooth-
ing function is determined by the "distant" observations 
(before and after t0). Obviously, such missing dots are not 
used in the weighted averaged wavelet map to obtain the 
corresponding periodogram. 

In the short format, a special "variable length" algo-
rithm: for each shift t0 is determined the number np of trial 
periods P, for which the value of the test function is non-

zero. Then in the file are written t0, np and an array of val-
ues of the remaining test function. For sparing file size, 
only one of the test functions is chosen (namely WWZ). 

The second output file contains the charactersistics of 
the skeleton, and the third one – the mean weighted wave-
let periodogram (lgP, <WWZ>, <S>, <r>). 

 
Conclusions 

The program for the wavelet analysis of the modified 
method of Morlet is introduced. The algorithm general-
ized to the general case of irregularly spaced (in time) 
observations was proposed by Andronov (1998). The pro-
gram enables to calculate three different test functions 
with a meaning of: a) the "signal/noise” ration (WWZ); b) 
the square of the correlation ratio for the observed and 
smoothed values of the signal (S); c) the semi-amplitude r 
of the smoothing sine function,  

The program has the graphical interface and the ability 
to visualize the light curve and wavelet maps, cross-
sections on both coordinates and the skeletons.  

We developed the software used for the study of vari-
able stars, and the results of this study will be used in the 
frame of the projects "Ukrainian Virtual Observatory” 
(UkrVO) (Vavilova et al., 2012) and “Inter-Longitude 
Astronomy’ (Andronov et al., 2010). 

 
References 

Andronov I.L.: 1990, Kinem. Phys. Celest. Bodies, 7, 70, 
1991KPCB....7...70A 

Andronov I.L.: 1998, Kinem. Phys. Celest. Bodies, 14, 
374, 1998KPCB...14..374A 

Andronov I.L.: 2010, Odessa Astron. Publ., 23, 8. 
Andronov I.L., Chinarova L.L.: 2012, Odessa Astron. 

Publ., 25, 148. 
Andronov I.L.: 1997, Astron. Astrophys. Suppl., 125, 207. 
Andronov I.L.: 1999, in: Priezzhev VB, Spiridonov VP 

(eds.) Self-Similar Systems// Dubna: JINR, 57. 
Astafieva N.M.: 1998, UFN (Advances in Physical 

Sciences), 166, 1145. 
Chinarova L.L.: 2010, Odessa Astron. Publ., 23, 25. 
Daubechies I.: 1992, Ten Lectures on Wavelets, SIAM. 
Foster G.: 1996, Astron. J., 112, 1709. 
Szatmary K., Vinko J., Gal J.: 1994, Astron. Astrophys. 

Suppl., 108, 377. 
Vavilova I.B.: 2012, Kinem. Phys. Celest. Bodies, 28, 85,  

2012KPCB...28...85V 
Vitjazev V.V.: 2001, Wavelet Analysis of Time Series (in 

Russian), St-Petersburg Univ. 

 

Odessa Astronomical Publications, vol. 26/1 (2013) 29




