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ABSTRACT. Inflationary stage is followed by
particle production in the background of an oscillating
inflaton field, which process is called preheating.
For sufficiently strong couplings between the in-
flaton and matter fields, it is known to proceed
non-perturbatively, with parametric resonance playing
crucial role for bosonic fields. The evolution of the
occupation numbers for fermions is non-perturbative
as well. In the Minkowski space, parametric resonance
for bosons and non-perturbative effects for fermions
would still persist even in the case of weak coupling.
In particular, the energy density of created bosons
would grow exponentially with time. However, the
situation is quite different in the expanding universe.
We give a simple demonstration how the conditions
of the expanding universe, specifically, redshift of the
field modes, lead to the usual perturbative expressions
for particle production by an oscillating inflaton in
the case of weak couplings. The results that we obtain
are relevant and fully applicable to the Starobinsky
inflationary model.
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1. Introduction

Consider a scalar field ϕ (to be later associated with
the inflaton) of mass M interacting with a light scalar
field φ of mass mφ ≪ M with the interaction La-
grangian density

Lint = −σϕφ2 , (1)

where σ is a constant of dimension mass. Suppose that
the homogeneous field ϕ(t) is classically oscillating in
the neighborhood of its minimum at ϕ = 0 with am-
plitude ϕ0, while the field φ is in the vacuum state. In
the Minkowski space, this initial condition would lead
to production of φ-particles via parametric resonance.

For sufficiently small values of σ, namely, for

σϕ0 ≪M2 , (2)

the resonance will be most efficient in the first narrow
resonance band centered at the frequency

ωres =
M

2
(3)

(see Shtanov, Traschen and Brandenberger, 1994).
Within the resonance band, the mean particle occu-
pation numbers grow with time according to the law

Nk =
1

1 − ∆2/σ2ϕ20
sinh2 λ t , (4)

where

λ =
1

M

√
σ2ϕ20 − ∆2 , ∆ = ω2

k − ω2
res , (5)

and ωk =
√
m2
φ + k2 ≈ k is the frequency of the mode

of the field φ. The width of the resonance band is
determined by the condition that the expression under
the square root in (5) is nonnegative.

The total particle number, as well as the energy
density of the φ-particles, in Minkowski space grows
asymptotically exponentially with time, in contrast to
the expectations based on the näıve perturbation the-
ory, where it grows with time only linearly.

There are several important modifications in the case
of expanding universe. Firstly, the amplitude of the
oscillating inflaton gradually decreases with time as
ϕ0 ∝ a−3/2, where a is the scale factor. Secondly, the
frequency of the mode of the scalar field φ is redshifted:

ωk =

√
m2
φ +

k2

a2
≈ k

a
, (6)

where k now is the comoving wave number. Neverthe-
less, the theory of parametric resonance is still appli-
cable if the evolution of the relevant quantities occurs
adiabatically: ∣∣∣ϕ̇0/ϕ0∣∣∣ =

3

2
H ≪M , (7)
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where H ≡ ȧ/a is the Hubble parameter, and∣∣∣λ̇/λ∣∣∣ ≪ λ , (8)

In this case, one can replace law (4) by an approx-
imate expression (Shtanov, Traschen and Branden-
berger, 1994)

Nk ≃ sinh2

∫
λ dt (9)

as long as the mode with the comoving wave number
k remains within the resonance band.

If the adiabaticity condition (8) does not hold, and
the parametric resonance, therefore, does not develop,
then one usually employs the Born approximation for
the total width Γφ of decay of a ϕ-particle into a pair
of φ-particles:

Γφ =
σ2

8πM
. (10)

However, if this näıve formula does not work in the
Minkowski space (as argued above), one may wonder
why it works in the case of expanding universe.

Similar issues can be raised about the production of
fermionic particles. Although there is no parametric
resonance in this case, still the picture of creation of
particle pairs by an oscillating classical field is quite
different from that based on the usual perturbation
theory (Greene and Kofman, 1999, 2000). Neverthe-
less, in the case of expanding universe, one often uses
the Born formula for the total width of decay of ϕ into
a pair ψ,ψ :

Γψ =
Υ2M

8π
(11)

where Υ is the Yukawa coupling of the scalar field ϕ to
the fermionic field ψ. (The widths (10) and (11) in the
Born approximation in the background of an oscillating
classical field in the Minkowski space are calculated,
e.g., in Shtanov, Traschen and Brandenberger, 1994.)

The purpose of this letter is to clarify the formulated
issues and to justify equations (10) and (11) in the case
of expanding universe. Our results will be applicable,
in particular, to the Starobinsky inflationary model
(Starobinsky, 1980), as we will show below.

2. Inflaton decay in the expanding universe

We derive the rates of the inflaton decay into (scalar)
bosons and fermions in the expanding universe using
the method of Bogolyubov coefficients. For more de-
tails, see Rudenok, Shtanov and Vilchinskii, 2014.

A scalar field φ with mass mφ interacting with the
inflaton ϕ via coupling (1) obeys the equation of motion

�φ+
(
m2
φ + 2σϕ

)
φ = 0 . (12)

For the mode χk = a3/2φk with the comoving wave
number k, at the preheating stage, we have the equa-
tion (see, e.g., Shtanov, Traschen and Brandenberger,

1994)
χ̈k + Ω2

kχk = 0 , (13)

where

Ω2
k(t) = ω2

k(t) + 2σϕ(t) − 9

4
H2 − 3

2
Ḣ , (14)

and ωk is given by (6). At the preheating stage, the
inflaton field evolves as

ϕ(t) = ϕ0(t) cosMt , (15)

where the amplitude ϕ0(t) ∝ a−3/2(t) slowly decreases
with time due to the universe expansion as a conse-
quence of the adiabaticity condition (7).

Using equation (5), and taking into account that
inflaton-field oscillations mainly occur in the regime
ϕ0 ≪ MP, one can see that the adiabaticity condition
(8) is violated for weak coupling satisfying (2). It is
this case that will be under study in the present paper.

As a consequence of non-stationarity of the external
field ϕ and of the metric, the quantity Ωk in (13) is a
function of time. In the case Ωk = const, the solution
for φk would maintain its positive-frequency character,
i.e., φk ∼ eiΩkt for all t. The time-dependence of Ωk
results in the mixing of frequencies, hence, in particle
production of the field φ. In the case under consid-
eration, the resonance band is passed so quickly that
parametric resonance does not develop, and particle oc-
cupation numbers are small. Therefore, in calculating
them, one is justified to use perturbation theory.

The mixing of frequencies is considered in a standard
way by looking for solutions of the field equation in the
form (Grib, Mamayev and Mostepanenko, 1994)

φk(t) =
1√
Ωk

[
αk(t)e

i
∫ t
t0

Ωk(t
′)dt′

+ βk(t)e
−i

∫ t
t0

Ωk(t
′)dt′

]
, (16)

φ̇k(t) = i
√

Ωk

[
αk(t)e

i
∫ t
t0

Ωk(t
′)dt′

− βk(t)e
−i

∫ t
t0

Ωk(t
′)dt′

]
, (17)

where αk(t) and βk(t) are the Bogolyubov coefficients
satisfying the relation

|αk|2 − |βk|2 = 1 . (18)

In terms of these coefficients, the average occupation
numbers in the corresponding modes are given byNk =
|βk|2. Substituting expressions (16), (17) into (13), one
obtains the system of equations for αk and βk,

α̇k =
Ω̇k
2Ωk

e
−2i

∫ t
t0

Ωk(t
′)dt′

βk , (19)

β̇k =
Ω̇k
2Ωk

e
2i

∫ t
t0

Ωk(t
′)dt′

αk , (20)

with the initial conditions αk = 1, βk = 0. Treat-
ing this system perturbatively, in the first order, we
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replace αk by unity in (20). Then, leaving only the
resonant term in this equation, we use the stationary-
phase approximation to evaluate the coefficient βk (see
Rudenok, Shtanov and Vilchinskii, 2014):

βk =
σMϕ0(tk)

4ω2
k(tk)

√
π

|ω̇k(tk)|
=
σϕ0(tk)

M3/2

√
2π

H(tk)
, (21)

where the moment of time tk is defined by the
stationary-phase relation ωk(tk) = M/2, which is just
the moment of passing through the center of the reso-
nance band for the k-mode.

The process of particle production can be pictured as
follows. A mode with sufficiently high wave number k
undergoes redshift till it reaches the resonance region.
After passing through the narrow resonance band, it
becomes filled with particles with average occupation
numbers given by (21), which, in our approximation,
remain subsequently constant. The modes with wave
number smaller than kmin = Ma(t0)/2, where t0 is
the moment of the beginning of particles creation, will
never pass through the resonance region due to the red-
shift and will be free of particles in our approximation.

In this picture, the energy density ρφ(t) of the cre-
ated particles at any moment of time is given by

ρφ(t) =
1

a4(t)

∫
d3k

(2π)3
k|βk|2

× θ (k − kmin) θ (Ma(t) − 2k) , (22)

where θ(x) is the Heaviside step function.
By comparing the time derivative of this energy den-

sity with the equation for the evolution of the energy
density ρφ of continuously created relativistic particles,

ρ̇φ = −4Hρφ + Γφρϕ , (23)

we determine the effective rate of particle production
Γφ:

Γφρϕ =
k3|βk|2Mȧ

4π2a4

∣∣∣∣
k=Ma/2

. (24)

Hence, using (21) and relation ρϕ = 1
2M

2ϕ20, we get
the standard expression (10) for the quantity Γφ.

Consider now the case of fermions. In a curved
space-time, one uses the covariant generalization of the
Dirac equation:

[iγµ(x)Dµ −m]ψ(x) = 0 , (25)

where γµ(x) = hµ(a)(x)γa, with γa being the usual

constant Dirac matrices, and hµ(a)(x) is a pseudo-

orthonormal tetrad.
We consider the typical case where the spinor field ψ

interacts with the inflaton field ϕ through the Yukawa
coupling

Lint = Υϕψψ . (26)

This leads to the appearance of the effective time-
dependent fermion mass in equation (25):

m(t) = mψ − Υϕ(t) . (27)

The Bogolyubov transformation in this case is per-
formed in a usual way as described, e.g., in Grib,
Mamayev and Mostepanenko, 1994. The first-order
perturbation-theory solution for the Bogolyubov coef-
ficient βk has the form

βk =
ΥM

4i

∫ t

t0

ϕ0(t′)

ωk(t′)
e
2i

∫ t′
t0
ωk(t

′′)dt′′−iMt′
dt′ , (28)

where

ωk =

√
m2
ψ +

k2

a2
≈ k

a
. (29)

Higher-order corrections to this perturbative solution
are small under the condition (Shtanov, Traschen and
Brandenberger, 1994)

Υϕ0
M

≪ 1 , (30)

which is assumed to be the case.
By using the stationary-phase approximation, we

obtain, similarly to (21) (see Rudenok, Shtanov and
Vilchinskii, 2014),

βk = −ΥMϕ0(tk)

4ω(tk)

√
π

|ω̇k(tk)|

= −1

2
Υϕ0(tk)

√
2π

MH(tk)
. (31)

Then, repeating the reasoning of the case of bosons,
and taking into account the four spin polarizations of
particles and anti-particles, we get the final result for
the production rate of fermions Γψ, which coincides
with (11).

3. The Starobinsky model

Historically, one of the first inflationary models was
the model suggested by Starobinsky in 1980. It is mo-
tivated by the necessity to consider local quantum cor-
rections to the Einstein theory of gravity. The simplest
such correction represents the term proportional to the
second power of the Ricci scalar in the action of the
model, so that the full gravitational action reads as

Sg = −M
2
P

2

∫
d4x

√
−g

(
R− R2

6µ2

)
, (32)

where
µ = 1.3 × 10−5MP (33)

is a constant with indicated value required to explain
the inflationary origin of the primordial perturbations
(Faulkner et al., 2006).
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A conformal transformation gµν → χ−1gµν , with

χ = exp
(√

2
3
ϕ
MP

)
transforms the theory (32) into the

usual Einstein gravity with a new special scalar field ϕ
(the scalaron) :

Sg = −M
2
P

2

∫
d4x

√
−gR

+

∫
d4x

√
−g

[
1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (34)

where

V (ϕ) =
3µ2M2

P

4

[
1 − χ−1(ϕ)

]2
(35)

is the arising field potential.
The scalaron universally interacts with other fields

present in the theory. At the preheating stage, we can
employ the relation

|ϕ/MP| ≪ 1 . (36)

Without taking into account the back-reaction of the
mater fields on the dynamics of the scalaron field, its
behavior at the stage of preheating is approximately
described by the Klein–Gordon equation

�ϕ+ µ2ϕ = 0 , (37)

and by the oscillatory regime (15) with mass M = µ.
Due to condition (36) and assuming also that mφ ≪

µ, one can obtain an approximate equation for a scalar
field φ minimally coupled to gravity in the original
frame (32):

�φ+

[
m2
φ − µ2ϕ√

6MP

]
φ = 0 . (38)

This is just equation (12) with

σ = − µ2

2
√

6MP

, (39)

Thus, the theory of Sec. 2 is applicable here, and the
particle production rate is given by (10):

Γφ =
σ2

8πM
=

µ3

192πM2
P

, (40)

which coincides with equation (7) of Gorbunov and
Panin, 2010.

For the fermions, we derive the decay rate (11):

Γψ =
Υ2M

8π
=

µm2
ψ

12πM2
P

, (41)

which, up to a factor four (possible account of the spin
states), coincides with equation (8) of Gorbunov and
Panin, 2010.

4. Discussion

Particle production in the background of an exter-
nal classical oscillating field is one of the key processes
describing the stage of preheating after inflation. In
Minkowski space, it would be dominated by the para-
metric resonance in the lowest resonance band, no mat-
ter how small is the coupling between the inflaton and
bosonic matter fields. The energy density of the cre-
ated particles would grow exponentially with time, in
contrast to the usual perturbation-theory expectations.

The specific features of the expanding universe, sur-
prisingly, restore the validity of the usual Born formula
in the case of sufficiently weak coupling. The reason is
that every particular mode of the field to be excited,
due to redshift, quickly passes the resonance zone, re-
sulting in small occupation numbers.

It is also important that couplings (1) and (26) were
linear in the inflaton field ϕ, so that we also had
Nk = |βk|2 ∝ ϕ20 ∝ ρϕ. These are precisely the types
of coupling responsible for the decay of a ϕ-particle,
justifying the interpretation of (10) and (11) as decay
rates.

We have shown that the results of the present pa-
per are fully applicable to one of the most successful
inflationary models — the Starobinsky model.
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