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ABSTRACT. The expression for the tidal forces of
the two relativistic protons at a distance of the order
of the Compton wavelength near a rotating black hole
is found. The analysis shows that the tidal forces
are dependent on the plane of incidence and sharply
increase with increasing Lorentz factor.
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1. Introduction

The problem of deviation of geodesic is important in
the study of motion of n-interacting particles in strong
gravitational fields and in particular, the study of the
deformation of the gas and dust clouds in the vicinity
of black holes.
When driving two or more closely spaced particles in

curved space-time their is a deviation of geodesic lines.
General view of the geodesic deviation equation of the
n-dimensional Riemannian manifold was obtained by
T. Levi-Civita in 1925 Ref. 1. For the 4-dimensional
space deviation equation for structureless massless par-
ticles was investigated in Refs. 2–3 by J.L. Sing.
The system of units G = c = 1 is used in the paper.

2. The Kerr Metric

The Kerr’s metric in Boyer-Lindquist coordinates
has the form [4]:

ds2 = ρ2
∆

Σ2
dt2 − Σ2

ρ2

[
dφ− 2aMr

Σ2
dt

]2
sin2θ −

ρ2

∆
dr2 − ρ2dθ2 , (1)

where
∆ = r2 − 2Mr + a2 , (2)

ρ2 = r2 + a2cos2θ , (3)

Σ2 = (r2 + a2)2 − a2∆sin2θ , (4)

and M is the black hole mass, aM its angular mo-
mentum 0 ≤ a ≤ 1. The event horizon of the Kerr’s
black hole corresponds to the coordinate:

rh =M +
√
M2 − a2. (5)

The static limit surface is defined by the value:

rst =M +
√
M2 − a2cos2θ . (6)

The region of space-time between the static limit and
the event horizon is called ergosphere.
In view of the equation (1) metric tensors are Ref.5:

gij =


Σ2/ρ2∆ 0 0 2aMr/ρ2∆
0 −∆/ρ2 0 0
0 0 − 1

ρ2 0

2aMr/ρ2∆ 0 0 −(∆− a2sin2θ)
/ρ2∆sin2θ

.
(7)

The nonzero components of the curvature tensor in the
Kerr metric have the form [5]:

R1023 = −aMcosθ(3r2 − a2cos2θ)
1

ρ6
, (8)

R1230 = −aMcosθ

ρ6
(3r2 − a2cos2θ)Σ−2

×[(r2 + a2)2 + 2a2∆sin2θ] , (9)

R1302 =
aMcosθ

ρ6
(3r2 − a2cos2θ)Σ−2

×[2(r2 + a2)2 + a2∆sin2θ] , (10)

−R3002 = R1213 = −aMcosθ

ρ6
(3r2 − a2cos2θ)

×3a∆1/2

Σ2
(r2 + a2)sinθ , (11)

−R1220 = R1330 = −Mr

ρ6
(r2 − 3a2cos2θ)

×3a∆1/2

Σ2
(r2 + a2)sinθ , (12)
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Figure 1: The deviation of curve Γ(v) from curve Γ(v+
δv).

−R1010 = R2323 =
Mr

ρ6
(r2 − 3a2cos2θ)

= R0202 +R0303 , (13)

−R1313 = R0202 =
Mr

ρ6
(r2 − 3a2cos2θ)Σ−2

×[2(r2 + a2)2 + a2∆sin2θ] , (14)

−R1212 = R0303 = −Mr

ρ6
(r2 − 3a2cos2θ)Σ−2

×[(r2 + a2)2 + 2a2∆sin2θ] . (15)

3. The equations of geodesic deviation

If there is a pair of adjacent curves Γ(v) and Γ(v+δv)
(Fig.1 ), then the equation of geodesic deviation for
structureless infinitely close particles has the form:

d2ηi

ds2
+RijkmU

jηkUm = 0 , (16)

where ηi — infinitesimal vector deviation, Rijkm =

gilRljkm — Riemann tensor, Um— 4-speed.
A solution of equation (16) is a vector of deviation

of world lines that covariantly describes the relative
acceleration between geodesic lines.
Let us consider the equations of geodesic deviation in

the Kerr metric. We find the equation of geodesic de-
viation for relativistic structureless particles that have
only radial velocity component, hence:

U i = Γ(1, V, 0, 0) (17)

where Γ = 1√
1−V 2

is Lorentz factor.

From the equations (16) and curvature tensor in the
Kerr metric (8)—(15) in this case, the equation of the
deviation will have the form:

D2η0

ds2 = Γ2
[
g03(R3002 −R0303) + g03V (R1230 +R1330

−R1302) + V 2(g00R1010 − g03R1313)
]
, (18)

D2η1

ds2
= −g11Γ2R1010(1 + V ), (19)

D2η2

ds2
= g22Γ2

[
R0202 + V (R1220 +R1302)−R1212V

2
]
,

(20)

D2η3

ds2 = Γ2
[
−g33R0303 + g33V (R1230 +R1330 −R1302)

+V 2(g03R1010 − g33R1313)
]
. (21)

From these equations it is seen that the relative
acceleration between the infinitely close to the world
lines will be directly proportional to the square of the
Lorentz factor.
To evaluate the tidal forces of the proton in the Kerr

metric we use the following restrictions:

• let proton with mass mp = 1.67 · 10−27kg is in
motion along a geodesic so that the deviation is
proportional to the Compton wavelength λpC =
1.32 · 10−15m,

• let movement only occurs in the equatorial plane
θ = π

2 ,

• the black hole has the following parameters: M =
106, a = 0.98,

• motion occurs at a coordinate of distance of r from
horizon of black hole r = 10−5rh,

• the proton velocity is V = (1− 10−15)c.

If we consider the assumptions given above, then cal-
culations made by us lead to the work of the tidal forces
F = 4.156 · 109 Newton’s. For example, the same force
on the surface of the Sun is about 4.5 · 10−26 Newtons.
For different values of velocities of particles obtain

the tidal forces by numerical calculations for protons
are given in the Fig. 2. The graph shows that the
tidal forces increase with the speed of the proton in
the center of mass of the order of 10−19 Newtons with
V = 0.9c up to 1019Newtons with V = (1− 1020)c.
Dependence of tidal forces on the mass and the spe-

cific angular momentum of the black hole is shown in
Fig. 3 and Fig. 4 respectively. It is important to note
that tidal forces are maximal for black holes of stellar
mass and are minimal for a supermassive black holes.
For example, if the black hole mass is of about mass
of Sun then it creates tidal forces near horizon order
1015 Newtons and supermassive black holes with mass
109M⊙ creates tidal forces order 106 Newtons. A sim-
ilar effect was observed in Ref. 6 for a Schwarzschild
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Figure 2: The dependence of the tidal force F on the
speed of the proton V .

Figure 3: The dependence of the tidal force F on the
black hole mass M .

black hole. Also if there is an increase of specific an-
gular momentum of the black hole then there is an
increase of the tidal forces near the horizon.
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Figure 4: The dependence of the tidal force F on the
specific angular momentum of the black hole a.
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