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ABSTRACT. Based on the magnetohydrodynamic 

(MHD) equations for an incompressible conductive viscous 
fluid, the possible mechanism of the formation of giant 
MHD vortices recently discovered in the solar atmosphere 
(chromosphere) is analyzed. It is assumed that these vor-
tices arise in the regions of the solar surface (photosphere) 
with ascending flows of hot plasma that arrives from the 
inner regions of the Sun as a result of thermal convection 
and is accelerated upward under the action of the chromos-
pheric plasma pressure gradient. It is shown that, under the 
assumption of plasma incompressibility and flow continu-
ity, the ascending plasma flows induce converging radial 
plasma flows, which create the convective and Coriolis 
nonlinear hydrodynamic forces due to the nonzero initial 
vorticity of the chromospheric plasma caused by Sun’s rota-
tion. The combined action of these two forces leads to the 
exponential acceleration of the solid-body rotation of 
plasma inside the ascending flow, thereby creating a vortex 
that generates an axial magnetic field, in agreement with 
astrophysical observations. 
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1. Introduction 
 
Recent publication [1] reported observation of cylindri-

cally symmetric vortex structures with characteristic radii 
of 500R   km in the solar atmosphere in the UV spectral 
region. There may be more than 104 such structures simul-
taneously on the Sun’s surface. These vortices penetrate 
through the entire chromosphere reaching the lower layers 
of the solar corona at an altitude of 2500 km. The exis-
tence of such magnetohydrodynamic (MHD) vortices, 
which were earlier predicted in [2–4], is now confirmed 
by means of precision optical measurements of the Dop-
pler shifts of the absorption lines of iron, calcium, and 
helium ions [5] corresponding to the vortex motion of the 
chromospheric plasma with velocities on the order of 
4 km/s. It was suggested in [1] that such MHD vortices 
could be responsible for the heating of the corona plasma 
up to temperatures of several million degrees due to dissi-
pation of the energy of Alfvén [6–10] and magnetosonic 
[11] waves excited by the vortex plasma motion. In [1], 
vortex structures were simulated numerically by using the 
MHD equations for a perfectly conducting ideal incom-
pressible fluid with allowance for the processes of radia-
tive energy transfer. It was assumed in [1] that an MHD 
vortex is accelerated due to its radial compression by con-

verging plasma flows, provided that the initial angular 
momentum of the vortex is conserved. 

However, as will be shown below, an MHD vortex in 
plasma cannot be regarded as a conservative system in 
which the angular momentum is constant, because there is 
a permanent influx of matter with a nonzero vorticity into 
the vortex core from the surrounding chromospheric 
plasma, i.e., such a vortex is an open nonequilibrium sys-
tem. As a result, the mechanism of the formation and evo-
lution of an MHD vortex in the solar chromosphere cannot 
be considered completely established. In the present work, 
we analyze a possible mechanism of the formation of an 
MHD vortex in the solar chromosphere and the accompa-
nying generation of magnetic fields and ohmic heating of 
the chromospheric plasma in the framework of an ap-
proximate description based on the MHD equations for an 
incompressible viscous fluid with a finite conductivity 
[12]. It is assumed that such vortices are initiated by the 
ascending flows of hot plasma that arise in some “hot 
spots” on the Sun’s surface, i.e., in the regions of the pho-
tosphere where hot plasma rises from the inner regions of 
the Sun as a result of convection. This hot plasma expands 
and rapidly flows upwards in the gravitational field 
through the surrounding colder chromospheric plasma, 
whose pressure rapidly drops with altitude. Under the 
conditions of the flow continuity and plasma incompressi-
bility, the ascending vertical flow creates converging ra-
dial flows. At a nonzero initial vorticity of the chromos-
pheric plasma caused by the Sun’s rotation, such converg-
ing flows give rise to convective and Coriolis nonlinear 
hydrodynamic forces. The combined action of these two 
forces leads to the acceleration of the solid–body rotation 
of plasma in the core of the MHD vortex, similar to the 
mechanism of the formation of air vortices in the Earth’s 
atmosphere (such as whirlwinds, tornadoes, and typhoons) 
earlier analyzed in [13]. Here, we analyze axisymmetric 
vortex solutions to the nonlinear MHD equations with 
separable variables that satisfy the continuity equation and 
cause the kinematic and magnetic viscosities of an incom-
pressible conductive fluid to vanish. Such solutions satisfy 
the principle of the minimum entropy generation in an 
open nonequilibrium system [13], i.e., correspond to the 
minimum dissipation rate of the kinetic and magnetic en-
ergies of the MHD vortex. It is shown that the vortex state 
is characterized by the exponential growth of both the 
azimuthal rotation velocity of the MHD vortex and the 
axial magnetic field, which qualitatively agrees with the 
observations [14,15] of the local concentration of the 
magnetic field under vortex motion of the solar plasma. 
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Such a growing magnetic field generates an azimuthal 
electric current in the external shell of the MHD vortex, 
which should lead to the ohmic heating of plasma in the 
chromosphere and lower layers of the solar corona. It is 
shown that, due to the instability of the growing tangential 
discontinuity of the azimuthal velocity at the boundary of 
the vortex core, strong local turbulence with an anoma-
lously high viscosity develops in the surface layer, which 
leads to the dissipation of MHD vortices. 

 
2. Basic equations for the description of MHD vor-
tices in the solar chromosphere 
 
To describe MHD vortices in the solar chromosphere, 

we will use the well-known set of MHD equations for an 
incompressible viscous conductive fluid [14]. 

We note that the MHD approximation can be used to 
describe electron--ion plasma only if the cyclotron radii of 
ions and electrons, as well as their Debye screening 
lengths and their free path lengths along the magnetic 
field, are smaller than the characteristic spatial scales of 
the problem (in particular, the MHD vortex dimensions). 
Such an approximation can also be used to describe a 
weakly ionized plasma with a high particle collision fre-
quency and low electric conductivity. At the same time, 
plasma in a magnetic field can be assumed to be incom-
pressible if the velocity of its macroscopic motion is lower 
than both the adiabatic sound speed /sc P    (where 
  is the adiabatic index) and the Alfvén velocity 

/ 4Ac H  . 
Let us analyze cylindrical axisymmetric (i.e., independ-

ent of the azimuthal angle  ) vortex flows of a conduc-
tive fluid (plasma) in which the self-consistent magnetic 
field has only the azimuthal and axial components, 

(0, , )zH HH . In this case, the set of MHD equations in 
cylindrical coordinates with allowance for the gravity ac-
celeration g  (which is directed vertically downward, i.e., 
in negative z  direction) takes the form 
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where r ,  , and z  are the radial, azimuthal, and axial 
components of the hydrodynamic velocity of the fluid, 
respectively,   and m  are the kinematic and magnetic 
viscosities, and the Laplace operator is 
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We note that terms 2 / r  and /r r    on the left-hand 
side of equations (1) and (2) describe the centrifugal force 
and the local Coriolis nonlinear hydrodynamic force, re-
spectively. 

In this case, the continuity equation for an incompressi-
ble fluid, div 0υ , and Maxwell's equation for the sole-
noidal magnetic field, div 0H , take the form 
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. (7) 

The simplest formal solutions to Eqs. (7) with the sepa-
rable variables r  and z  in the region 0r R  have the 
form 
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where the parameters   and   are related by the formula 
 ( 2 ) 0   . (9) 
 

3. Ascending flows of plasma in solar chromosphere 
 
The expression for the radial velocity ( )r r in Eq. (8) 

describes an incompressible radial plasma flow converg-
ing toward the axis that is induced by the ascending 
plasma flow the axial velocity of which increases linearly 
along z  axis, 0( )z zz z    . According to time-
independent equation (3), 
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such a velocity can appear under the action of the pressure 
P , which decreases with altitude according to the square 
law 
 2

0( ) ( )P z P az bz   , (11) 
where 0( )za g   and 2 / 2b  . As will be shown 
below, such a dependence of the pressure on z  can occur 
in the gravitational field at relatively low altitudes, pro-
vided that the plasma temperature sufficiently fast drops 
with altitude. 

Let us suppose that hot plasma in a certain region of ra-
dius 0R  in the solar photosphere flows up due to thermal 
convection in the gravitational field. This plasma expands 
and flows upward under the action of the buoyancy force 
in the colder denser chromospheric plasma. As the plasma 
flows up and expands, it plasma cools down, so that its 
temperature in the initial stage decreases almost linearly 
with altitude, 
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In this case, to within second-order terms in z , the 
barometric formula for the pressure of the chromospheric 
plasma in the Sun's gravitational field takes the form 
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For 0/ 2 Bmg k T  , this formula coincides with the 
adopted dependence (11) of the pressure on the z  coordi-
nate if we set 0 0/ Ba P mg k T   and 

0( / 2 )Bb mg k T a    (where m  is the mass of a hy-
drogen atom). As a result, we obtain two equations for 
determining two parameters, 0z  and  , entering into the 
expression for the increasing velocity of the ascending 
flow, 
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Taking into account the parameters of plasma in the 
lower layers of the solar chromosphere ( 10sc   km/s and 

0 6000T   K) and the value of the gravity acceleration on 
the Sun's surface ( 274g   m/s2), we obtain 

0 57.5z   m/s2 and 6
0/ 5.5 10Bmg k T    m-1. How-

ever, in this case, the parameter  , which has the dimen-
sion of the reciprocal length and characterizes the cooling 
rate of hot plasma with altitude, remains undefined, due to 
which the values of   and 0z  cannot be estimated inde-
pendently (see below). 

Note that the radius 0R  of the ascending flow should 
increase with altitude, which prevents separation of the 
variables r  and z  in the MHD equations. However, if the 
longitudinal inhomogeneity scale L  of the plasma flow 
radius is much larger than 0R , then, with a high degree of 
precision, we can set 0R const , which substantially 
simplifies the problem and allows us to investigate the 
main physical processes affecting the dynamics and evolu-
tion of MHD vortices in the solar atmosphere by means of 
an approximate procedure of separation of variables with-
out recourse to complicated computer simulations. 
 

4. Solid-body vortex rotation of plasma  
 
Let’s assume that at 0r R  the azimuthal components 

of the velocity and magnetic field are independent of z  
and have the form 
 ( ) ; ( )r r H r r       . (15) 

After the substitution of expressions (8) and (15) into Eqs. 
(1)–(5), a large number of terms on the right-hand sides 
(including those containing Laplace operator (6)) vanish. 
This corresponds to the zero kinematic and magnetic vis-
cosities of the incompressible conductive fluid (plasma), 

i.e., in fact to the nondissipative solid-body rotation of the 
MHD vortex core at 0r R . 

Substituting Eqs. (8) and (15) into Eqs. (1), (2), (4), and 
(5) and assuming that the parameters ,   and h  are 
functions of t , we obtain the following set of first-order 
equations that describe the dynamics of the MHD vortex 
core: 
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In this case, Eq. (4) is reduced to the condition 
/ 0d dt  , which is a consequence of the mutual com-

pensation of the nonlinear terms /r H r    and /r H r  
on the right- and left-hand sides of Eq. (4). This allows us 
to neglect the azimuthal component of the self-consistent 
magnetic field H  in the MHD vortex. 

Since, according to Eq. (9), we have 2  , solutions 
to Eqs. (17) and (18) have the form 
 ( ) (0) tt e   ,     ( ) (0) th t h e  , (19) 

where (0)  and (0)h  are the initial values of the angular 
plasma rotation velocity and axial magnetic field, respec-
tively. 

Equation (16) governs spatial distribution and temporal 
behavior of plasma pressure in the core of the MHD vor-
tex, which has the following form in the cyclostrophic 
regime of rotation of an incompressible fluid: 
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where 0P  is the pressure at the vortex axis (see below), 
and 0zg g    . 
 

5. Exponential regime of MHD vortex evolution 
 
It follows from Eq. (19) that the angular velocity of the 

solid-body rotation of the MHD vortex core and the axial 
component of the self-consistent magnetic field increase 
exponentially with a characteristic time of 1 /expt  . 

We see that the source of the exponential acceleration 
of the vortex core rotation is the linear increase in the ax-
ial velocity of the ascending flow of incompressible plas-
ma, 0( ) ( )z zz z    , as it propagates upward in the 
gravitational field of the Sun through the solar chromos-
phere, in which the temperature and pressure decrease 
with increasing altitude. 

The value of   can be estimated by equating the veloc-
ity of the ascending flow 0( )z zz z     to the speed of 
sound at the upper boundary of the solar chromosphere, 
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2500L   km. In the rarefied upper layers of the chro-

mospheric plasma, the speed of sound is 2 /s Bc k T m  , 

where 43 10T    K, so that 20sc   km/s. Assuming that 

0z sc   , we find that 3/ 8 10sc L     s-1 and the 
characteristic time of the exponential evolution of the 
MHD vortex is exp / 2st L c   min. 

It should be noted that the exponential growth of the ax-
ial magnetic field ( ) ( )zH t h t  qualitatively agrees with 
the local concentration of the magnetic field during the 
vortex motion of the chromospheric plasma observed in 
[14, 15]. In this case, the local Alfvén velocity 

( ) ( ) / 4A zc t H t   inside the vortex core grows expo-
nentially in time (see (19)). 

According to expression (20), the plasma pressure on 
the vortex axis at 0z   in the cyclostrophic regime of 
vortex rotation is 

 
2

20
0 0(0, ) ( )

2
R

P t P t


   . (21) 

According to Eqs. (19) and (21), this pressure decreases 
exponentially in time and vanishes at the time 
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where 0 0 (0)V R    is the initial azimuthal velocity of 
the vortex motion of plasma ( 0 sV c ). Since the negative 
pressure in the system leads to instability (collapse), an 
MHD vortex cannot exist at 0t t . The time 0t  can be 
approximately estimated if we assume that, in the order of 
magnitude, the initial value of the angular velocity (0)  
coincides with the average solar atmosphere vorticity 
caused by the nonuniform (liquid-like) rotation of the 
Sun's surface with the angular velocity varying with lati-
tude from 1 / 28   day on the equator to 1 / 33   day 
at a latitude of 75°. Estimates show that the initial vortic-
ity is 6(0) 2 10    s-1, which is one order of magnitude 
higher than the vorticity caused by the global Coriolis 
force on the solar surface. 

As a result, the initial azimuthal velocity of plasma at 
the boundary of a vortex of radius 0 500R   km is 

0 1V   m/s. Taking into account that the density of the 
chromospheric plasma on the Sun's surface is on the order 
of 95 10    g/cm3 and the temperature is 6000T   K 
and assuming that the density of hydrogen atoms is 

153 10n    cm-3, we find using the approximation of an 
ideal gas that the speed of sound is 10sc   km/s. Hence, 
with allowance for the above estimate of   and disregard-
ing dissipation of the vortex kinetic energy (see below), 
we find that the maximum time of the exponential evolu-
tion of an MHD vortex is 0 15 / 30t    min. 

On the other hand, it should be taken into account that the 
solid-body rotation of the vortex core begins to decelerate 
when the azimuthal velocity at 0r R  becomes compara-

ble with the speed of sound, because, at such velocities, the 
compressibility effects come into play and the fluid 
(plasma) acquires a nonzero bulk viscosity. Therefore, tak-
ing into account the exponential growth of the rotation ve-
locity of the vortex core, the maximum azimuthal velocity 

max
0 0( , ) ( )s s sR t V exp t c      is reached over a time 

01 / ln( / )s st c V  , which coincides with 0t . We note 
that the velocity of the vortex motion of the chromospheric 
plasma determined from the Doppler shift of the spectral 
lines is 4 km/s, which is half as large as the speed of sound, 
whereas according to computer simulations, the vortex ve-
locity at altitudes of 2500 km, where the speed of sound is 

20sc   km/s, can reach 15 km/s. 
The time 0 st t  also determines the maximum values of 

the axial component of the magnetic field inside the vortex 
core, 0(0) exp( )zH h t  , and the corresponding local 

Alfvén velocity max 2
0(0) / 4 exp( )Ac h t   . Assuming 

that the factor in front of the exponential in the last expres-
sion is on the order of the initial vortex velocity 0 1V   m/s, 
we find that max 10Ac   km/s. In this case, the magnetic field 
reaches its maximum value of max 250zH   G, which 
agrees with observational data [14, 15]. 

Note that the excitation of Alfvén and magnetosonic 
waves in the MHD vortex core cannot lead to vortex de-
celeration and plasma heating, because the Alfvén veloc-
ity grows according to the same exponential law as the 
azimuthal velocity of plasma rotation, whereas the speed 
of sound decreases due to a decrease in the pressure in the 
vortex core. 

 
6. Instability of the tangential discontinuity of the 
azimuthal velocity and local turbulence on the sur-
face of the MHD vortex core 
 
The exponential growth of the angular velocity of the 

solid-body plasma rotation in the MHD vortex core, where 
the radial and axial velocities are directly proportional to 
the radius r , is caused, as was mentioned above, by the 
combined action of the convective and Coriolis nonlinear 
hydrodynamic forces, which are equal in magnitude. 
However, in the external region 0r R , where the radial 
and azimuthal velocities are proportional to 1r , these 
forces, as can be easily verified, have opposite signs and 
exactly balance one other. As a result, there is no accelera-
tion of the initial vorticity (0) . Therefore, the azimuthal 
velocity experiences an exponentially growing jump (tan-
gential discontinuity) at the vortex core boundary. 

As was shown for the first time in [13], the exponential 
growth of the velocity jump leads to the absolute instabil-
ity of surface perturbations accompanied by the growth of 
their amplitude according to the double exponential law of 
the form 

 0( ) (0) exp ( )
2

t
k k

kV
t e t  


     
 

, (23) 

where (0)k  is the initial perturbation with the wavenum-
ber k  at 0t  . 
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Such instability develops much faster than the exponen-
tial acceleration of the solid-body rotation of the MHD 
vortex core. As a result, a strongly turbulent state is rap-
idly established near the vortex surface. Turbulence is 
localized in a layer of thickness  , which is comparable 
with the maximum amplitude of turbulent pulsations 

maxkl   . The amplitude reaches its maximum value 

maxmax
( )к k t   at the time maxt  at which the velocity of 

turbulent pulsations 

  0( ) ( ) (exp 1)
2

k
k k

d kV
t t t

dt


        (24) 

becomes equal to the speed of sound sc  and the effects of 
compressibility and finite viscosity come into play. It is 
well known that the wavenumber k  of the most unstable 
surface perturbations has the same order of magnitude as 
the reciprocal thickness of the transition layer 1 /  . 
Hence, we have 
 maxmax

/kl k      . (25) 

At max 1t  , expression (24) yields 

 max 0
0

1 ln sc
t t
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Thus, the peak amplitude of turbulent pulsations cannot 
exceed 
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0 0max

exp exp( )
2k
kV
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Taking the logarithm of expression (27) with allowance 
for relationships (23) and (25), we obtain to within loga-
rithmic accuracy the following transcendental equation for 
the characteristic scale length of turbulent pulsations l  
and, accordingly, the effective width   of the turbulent 
transition layer on the vortex core boundary: 

 
0 0

600
2 ln( / ) ln( / )

sс


    
 


 km. (28) 

Assuming that the amplitude 0  of the initial fluctua-
tions of quasineutral plasma is on the order of the Debye 

screening length 2/ 8B eD k T e n , which, at a chro-

mospheric plasma temperature of 6000T   K and an 
electron density of 153 10en    cm-3, is 510D   cm, we 
find that the thickness of the turbulent region surrounding 
an MHD vortex is 25   km, which corresponds to 
ln( / ) 25D  . If the amplitude of turbulent pulsations is 
known, then, applying the dimensionality analysis, we 
find that the turbulent viscosity of plasma inside the turbu-
lent layer is 7/ 3 8 10sc l       m2/s. 

The anomalously large effective viscosity of the turbu-
lent layer improves the stability of the MHD vortex core 
during its evolution. In this regard, it may be supposed 
that the observed filamentary structure of strong solar 
flares is caused by the simultaneous formation of a large 
number of MHD vortices in the photospheric hot spots. 

 

7. Deceleration of MHD vortices due to viscous en-
ergy dissipation and ohmic losses in the turbulent 
layer 
 
As we mentioned above, solutions with separable vari-

ables correspond to zero kinematic and magnetic viscosi-
ties of the incompressible conductive fluid (plasma) both 
inside the MHD vortex core at 0r R  and in the external 
region 0( )r R   . However, the kinetic energy of the 
vortex should dissipate inside the turbulent surface layer 
of thickness 0R   with an anomalously large turbulent 
viscosity   . The energy dissipation rate per unit vortex 
length is determined by the relationship 

 
2 2 2

0
0 2

( )
2

kindE R t
dV R

dt r
   



 
 

     
 . (29) 

On the other hand, the kinetic energy (per unit length) of 
the accelerated solid-body rotation of the vortex core is 
determined by the expression 

 
0

2 4 2
0

0

( ) ( , ) ( )
4

R

kinE t rdr r t R t


       . (30) 

In this case, the growth rate of the kinetic energy of vortex 
rotation accelerated under the action of the convective and 
Coriolis hydrodynamic forces is 

 4 4 2
0 0( ) ( )

2 2
kindE dR t R t

dt dt
  
       . (31) 

Comparing expressions (29) and (31), we obtain the fol-
lowing condition for the weak dissipation of the vortex 
energy: 0 / 2R      . For the above parameter val-
ues, 78 10     m2/s, 38 10    s-1, 0 500R   km, and 

25   km, the left- and the right-hand sides of this ine-
quality are nearly equal to one another, i.e., the rate of 
kinetic energy dissipation is nearly equal to the energy 
gain caused by the convective and Coriolis forces. As a 
result, in the final stage of evolution under the condition 
of strong turbulence in the surface layer, the MHD vortex 
reaches a regime of steady-state rotation and gradually 
dissipates. 

There is another energy dissipation mechanism in an 
MHD vortex that is related to ohmic losses leading to 
Joule heating. The heat is generated by the electric cur-
rents induced by the growing magnetic fields that flow in 
plasma with a finite conductivity. According to Maxwell's 
equations 

 4rot
c


 H j ,    1rot
c t


 

HE  (32) 

the generation of magnetic fields during the exponential 
evolution of MHD vortices should be accompanied by the 
generation of electric currents j  and electric fields E , 
which are related to one another via Ohm's law j E . 
However, taking into account that the vortex evolution is a 
relatively slow process, we can consider only the first of 
Maxwell's equations. In particular, the axial magnetic 
field, which is uniform inside the vortex core and vanishes 
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in the transition layer of thickness  , induces the azi-
muthal current 

 
( ) ( )( )

4 4
zH tc c h tj t
r  

 
    


. (33) 

in this layer. 
The azimuthal current of density (33) that flows inside 

the turbulent surface layer should lead to heat release in 
this layer, the power of which per unit vortex length is 

 2 2 2
0 02 / ( ) / 8Q R j c R h t       . (34) 

Here 2 /e e ee n m    is the electron conductivity of the 
chromospheric plasma with the electron density 

153 10en    cm-3, em  is the mass of an electron, and 
1310e

  s is the average time of electron–electron and 
electron–ion Coulomb collisions at an electron tempera-
ture of 410eT   K. Hence, in the order of magnitude, we 
have 910   s-1. 

As a result, setting 0( ) (0) exp( )h t h t  , we find that 
the Joule heating power in the final stage of MHD vortex 
evolution is 1Q   MJ/km. 

Joule losses must slow down the MHD vortex rotation, 
determined by relationships (38). The slowing down will 
be weak if 

 4 2
0

( )
( ) ( )

2
kindE t

R t Q t
dt


    . (35) 

Taking into account that the angular velocity ( )t  and the 
longitudinal magnetic field ( )h t  grow according to the 
same exponential law, we can rewrite inequality (43) in 
the form 

 
2 2

2
0 0

(0)
1Ac c

R V  


   
 , (36) 

which shows that, for the above parameter values, 
38 10    s-1, 910   s-1, 25   km, and 

0 500R   km, the Joule losses weakly affect MHD vortex 
dynamics if 0 0AV c . 

Due to ohmic heat release in the MHD vortex shell, ad-
ditional heating and ionization of the chromospheric 
plasma, followed by its recombination upon cooling, take 
place. This should lead to the glow of MHD vortices in 
the visible and UV spectral regions. Since MHD vortices 
can reach the lower layers of the solar corona, heat re-
leased due to the ohmic heating of plasma, along with that 
released due to the dissipation of the magnetic and kinetic 
energies of vortices during their decay, can play a signifi-
cant role in the heating of the solar corona to temperatures 
as high as 106 K. However, this issue requires additional 
study, which goes beyond the scope of the present work. 

To conclude, it should be emphasized that the initial lo-
cal vorticity of the solar plasma in the regions where 
MHD vortices begin to form can have opposite signs, so 
that the vortices in different solar hemispheres can rotate 
in different directions. Accordingly, the self-consistent 
axial magnetic fields generated by such vortices should 
have opposite directions. Thus it can be energetically ad-
vantageous for the magnetic field lines of the adjacent 
pairs of such vortices and anti-vortices to be closed into 
loops, which are indeed often observed in solar atmos-
phere. 
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