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ABSTRACT. Path equations of different orbiting
objects in the presence of very strong gravitational
fields are essential to examine the impact of its
gravitational effect on the stability of each system.
Implementing an analogous method, used to examine
the stability of planetary systems by solving the
geodesic deviation equations to obtain a finite value of
the magnitude of its corresponding deviation vectors.
Thus, in order to know whether a system is stable or
not, the solution of corresponding deviation equations
may give an indication about the status of the stability
for orbiting systems.Accordingly, two questions must
be addressed based on the status of stability of stellar
objects orbiting super-massive black holes in the
galactic center.
1. Would the deviation equations play the same
relevant role of orbiting planetary systems for massive
spinning objects such as neutron stars or black holes?
2. What type of field theory which describes such a
strong gravitational field?
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1. Introduction

The problem of stability in our study is centered only
on examining the stability of orbits in a very strong
gravitational fields. In our Galaxy, S-stars are counted
to be good candidates, to explain such a phenomenon.
S-Stars are of spectral class B, that have been traced
near infrared. The characteristic behavior of these
stars as they are very fast orbital motions around the
Galactic Center, with orbital periods more than 16
years, high eccentricities e > 0.2, and their distances
from the Galactic Center is between 100−102mpc (Han,
2014), which is greater than the center’s radius r >> rg
where rg its Schwarzschild radius. Also, a stringent
condition is taken based on m

M < 10−5, where m and
M are masses of stellar object and center of SgrA* re-
spectively (Iorio, 2011). One of most brightest member
of this group is S2, which takes about 16 years to re-

volve about the center of Galaxy with a radial speed
10, 000km/sec and its mass is about 15msun (Meyer et
al., 2012). Recently, another type of stars S0-102 with
lesser brightness and shorter period about 11.5 years.
Unlike, the orbits of satellites, planets or pulsars in the
galactic center the orbital periods are much longer lead-
ing to the relativistic effects increase more steeply with
small radius and very high velocities than classical ef-
fects leading to the involvement of relativity is strongly
appear around the peri-center passage. Accordingly, S-
stars can be counted as clocks in orbit around a black
hole moving on geodesics (Angelil et al., 2014). Any
slight effective perturbation on these trajectories can
be obtained by obtaining its corresponding geodesic
deviation equations.

In general the problem of stability is not only re-
lated to geodesic deviation equations, but to path de-
viation equations of spinning object for a point mass
particle (Mohseni, 2010), which can also be extended
to be charged and spinning charged objects. However,
a slight problem can be emerged which is the solution
of these deviation equations are completely affected by
a coordinate system. Yet, Wanas and Bakry (2008)
developed an approach based on determining a scalar
value of the geodesic deviation capable for detecting
the status of stability of any a certain planetary sys-
tem in the presence of weak gravitational fields (Wanas
& Bakry, 2008).

In the present work, we are going to examine stabil-
ity conditions in the presence of a strong gravitational
field, using Verozub’s version of bi-metric theory of
gravity, which is one of the most appealing theories
(Verozub, 2015).

2. Equations of motion for orbiting objects

It is well known that from observational methods,
to confirm that both planetary and stellar objects are
exhibiting two types of motion revolving and spinning
to become stable in their orbits. From this perspec-
tive, it is important to study stability of these systems
by causing a slight perturbation that affects these com-
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bined motion and checks whether the object remains in
the orbit or lose it forever. Such a technique is required
to solve the path deviation equations of these objects.
Accordingly, it is vital to obtain these equations from
perturbing the original path equation. In case of plan-
ets/stellar objects, several authors have recommended
Mathisson-Papapetrou- Dixon equations (MPD) to be
most reliable set of equation for describing such a sit-
uation (Dixon, 1970).

DPµ

DS
= Fµ, (1)

DSµν

DS
=Mµν , (2)

where Pµ is the momentum vector, Fµ = 1
2R

µ
νρδS

ρδUν ,

Rαβρσ is the Riemann curvature, D
Ds is the covariant

derivative with respect to a parameter S,Sαβ is the spin
tensor, andMµν = PµUν−P νUµ such that Uα = dxα

ds
is the unit tangent vector to the geodesic.
Using the following identity on both equations (1) and
(2)

Aµ;νρ −Aµ;ρν = RµβνρA
β , (3)

such that Aµ is an arbitrary vector. Multiplying both
sides with vectors, Uρ and Ψν as well as using the
following condition (Heydri-Fard et al., 2005)

Uα;ρΨ
ρ = Ψα;ρU

ρ, (4)

and Ψα is its deviation vector associated to the unit
vector tangent Uα. Also in a similar way:

Sαβ;ρ Ψρ = Φαβ;ρ U
ρ,

one obtains the corresponding deviation equations
(Mohseni, 2010)

DΦµ

DS
= Fµ;ρΨ

ρ, (5)

DΦµν

DS
=Mµν

;ρ Φρ (6)

where Φα, Φαβ are the spin path deviation and the spin
tensor deviation associated to a path characterized by
a parameter S and (; ) is the covariant derivative in
Riemannian spaces.
In our study, it is worth mentioning that in case of S-
systems, the orbiting systems are becoming MPD with
Sµν is constant.
Thus,

DUµ

DS
=

1

2m
Fµ, (7)

DSµν

DS
= 0, (8)

with taking into consideration that

SµνUµ = 0.

Accordingly, one transform V α to Uα in the following
way:

V α = Uα + σ
DΨα

Ds

where V α = dx
dS the tangent vector describing the spin-

ning motion, S its associated geodesic parameter and
σ ia an arbitrary parameter acting as a spin angular
momentum ratio (Bini & Gerlalico, 2014).
Thus,

D

DS
V α =

D

Ds
(Uα + σ

DΨα

Ds
)
ds

dS

as well as
Sµν = ŝ(ΨµUν −ΨνUµ),

such that σ = ŝ
m . Thus,

D

DS
V α =

ŝ

m
RµνρσU

ρΨσUβ
ds

dS
,

Let ds
dS = 1, we obtain

D

DS
V α =

ŝ

m
RµνρσU

ρΨσUβ , (9)

the above equation gives an indication that the path
equation of a spinning particle is expressed in terms of
its corresponding geodesic deviation vector.

Such a result can be also extended to study the mo-
tion of binary pulsar, PSR-J0737-3039. It is composed
of two neutrons stars, located at a distance 109km from
the Galactic Center, of negligible intrinsic rotations re-
grading to the orbital period of about 2.4 hours, and
their total mass is about 0.7Msun. This can give that

D

DS
V α1 − D

DS
V α2 =

D

Ds
(Uα + σ1

DΨα

Ds
)
ds

dS

− D

Ds
(Uα + σ2

DΨα

Ds
)
ds

dS
.

where σ1 and σ2 the angular momentum ratio of each
neutron star of this binary pulsar, to obtain the follow-
ing equation

D

DS1
V α1 − D

DS2
V α2 = (σ1 − σ2)R

α
ρδβU

δUρΨβ ,

in which V α1 and V α2 are two tangent vector associated
to each spinning object in the binary system.
Consequently, we find out that

DV̄ α

DS
= (σ1 − σ2)R

α
ρδβU

δUρΨβ (10)

such that, V̄ α = V α1 − V α2 .
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3. The relationship between stability and
geodesic deviation

It is well known that stability of planetary / stellar
systems can be represented by a path deviation equa-
tion for an orbiting object.
Consequently, the stability tensor can be defined as
follows:

Hα
γΨ

γ = RαβωγU
βUω (11)

where Hα
γ is the stability tensor defined as (Di Bari &

Cipriani, 2000).
Thus geodesic deviation equation may be expressed

in terms of stability tensor;

D2Ψα

DS2
= Hα

βΨ
β (12)

which is reduced to

d2Ψµ

dS2
+ 2Γµνρ

dΨν

dS
Uρ + Γµνρ,σU

νUρΨσ = 0, (13)

provided that (Di Bari & Cipriani, 2000)

gµνΨ
µΨν = constant.

Also, equation (9) and (10) can be written in terms of
stability tensor in following way

D

DS
V α = σRµσΨ

σ, (14)

and
DV̄ α

DS
= (σ1 − σ2)H

α
βΨ

β . (15)

Such a result for linearized systems gives rise to in-
dicate that geodesic deviation vector can determine
the spin path equation for S-stars and binary pulsar
that are expressed by MPD equations. In order to ob-
tain the solution, one must solve its corresponding field
equation and define a certain coordinate system, to ob-
tain the value of the deviation vector.
However, Wanas and Bakry (1995) introduced an ap-
proach, for examining the stability problem for any
planetary system, being a covariant coordinate inde-
pendent which can be explained in the following way
(Wanas & Bakry, 1995)).
Let Ψα(S) is obtained from the solutions of the devia-
tion equation in a given interval [a,b] in which Ψα(S)
behave monotonically. These quantities can become
sensors for measuring the stability of the system are

qα
def.
= Ψα(S) = Cαf(S), (16)

where Cα are constants and f(S) is a function known
from the metric. If f(S) → ∞, the system becomes
unstable otherwise it is stable. This approach has
been applied previously in examining the stability of
some cosmological models (Wanas & Bakry, 1995)

using two geometric structures (Wanas, 1986). The
above approach has been modified by obtaining the
scalar value of the deviation vector which gives rise to
become independent of any coordinate system (Wanas
& Bakry, 2008)

q
def.
= lim

s→b

√
ΨαΨα. (17)

If q → ∞ then the system is unstable, otherwise it is
always stable.
Now for spinning objects with precession, we suggest

the above condition be extended to include the spin
deviation tensor Φµν as

q̄
def.
= lim

s→b

√
ΦαβΦαβ . (18)

Thus, for such a member in stellar/planetary system
is stable, if and only if the magnitude of the scalar
value of both spin deviation vectors Φα and spin devi-
ation tensors Φαβ to be real numbers respectively. i.e.
either q → ∞ or q̄ → ∞ the assigned member is un-
stable. Accordingly, a strong stability condition must
be admitted if both q and q̄ are satisfying the following
conditions:

lim
s→∞

(ΦαΦ
α) = 0, (19)

and
lim
s→∞

(ΦαβΦ
αβ) = 0. (20)

4. Geodesic and geodesic deviation: The
Bazanski approach

Geodesic and geodesic deviation equations can be
obtained simultaneously by using the Bazanski La-
grangian (Bazanski, 1989):

L = gαβU
αDΨβ

DS
, (21)

where L is the lagrangian function.
Thus, it can be found clearly, if one takes the variation
with respect to the deviation vector Ψρ to get geodesic
equations:

dUα

dS
+ ΓαµνU

µUν = 0. (22)

Also, the same technique can be applied to get the
variation with respect to the tangent vector Uρ to get
the geodesic deviation equations:

D2Ψα

DS2
= Rα.βγδΨ

γUβUδ. (23)

The above Lagrangian has been modified to describe
the path equation of a charged object to take the fol-
lowing form (Kahil, 2006);

L = gαβU
αDΨβ

DS
+

e

m
FαβU

αΨβ
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where e
m is the ratio of charge to mass of any charged

object, Fµν is an electromagnetic field tensor. Taking
the variation with respect to Ψalpha one obtains

dUα

dS̄
+ ΓαµνU

µUν =
e

m
Fµ.νU

ν . (24)

While taking the variation with respect to Uα one ob-
tains its corresponding deviation equations:

D2Ψα

DS2
= Rα.µνρU

µUνΨρ +
e

m
(Fα.ν

DΨν

Ds
+ Fα.ν;ρU

νΨρ).

(25)
Also the corresponding Papapetrou Equation for ro-

tating objects without precession can be obtained from
the following Lagrangian:

L = gαβU
αDΨβ

DS
+

1

2m
FµΨ

µ (26)

Taking the variation with respect to Ψα, we obtain
the spin path equation,

dUα

dS
+ ΓαµνUµUν =

1

2
Fα (27)

and taking the variation with respect to Uα, we obtain
the spin deviation equation

D2Ψα

DS2
= RαβγδU

βUγΨδ +
1

2
Fα;ρΨ

ρ. (28)

In case of the Dixon equation for spinning charged ob-
jects can be obtained in a similar way from the follow-
ing Lagrangian

L = gαβU
αDΨβ

DS
+

1

2m
(Fµ + eFµνU

ν)Ψµ. (29)

Taking the variation with respect to Ψµ we obtain

dV α

dS
+ ΓαµνU

µUν =
e

m
Fµ.νU

ν +
1

2m
Fµ. (30)

While its corresponding deviation equation can be ob-
tained by taking the variation with respect to Uα

D2Ψα

DS2
= Rα.µνρU

µUνΨρ +
e

m
(Fα.νU

ν);ρΨ
ρ +

1

2
Fα;ρΨ

ρ.

(31)
Similarly, we can modified the Lagrangian (21) to

obtain spin equation and spin deviation equation for
rotating objects with precession in the following way:

L = gαβP
αDΨβ

DS
+ FαΦ

α (32)

where

Pα = mUα + Uβ
DSαβ

DS
.

In order to obtain an equation of spinning object with
precession, we take the variation with respect to the
deviation vector Φα

DPα

DS
= Fα. (33)

And for its spin deviation equation, we take the varia-
tion with respect to Uα to become:

D2Φα

DS2
= Rα.µνρP

µUνΦρ + Fµ;ρΦ
ρ. (34)

While for its precession part it can be obtained using
the following condition:

PµS
µν = 0,

to give
DSαβ

DS
= PµUν − P νUµ.

5. Stability of motion in bimetric theory of
gravity: the Verozub approach

In this section, we are showing that the treatment of
the stability problem in strong fields may be explained
in the presence of bimetric theory of gravity. This type
of bimetric theories was proposed by Rosen in 1940,
who regarded gravity can be expressed in flat space.
Due to considering that, all objects of the Rieman-
naian space are functions in Minkowski space (Rosen,
1973). But such a type of visualization gives no phys-
ical meaning, with inconsistency with observations as
well as there is no relation between the two metrics
(Verozub, 2015). Recently, Verozub has introduced
a new version of bimetric theory of gravity, stemmed
from a well known principle of Poincare that properties
of space-time are relative to the properties of used mea-
suring instruments,together with the Einstein idea of
the relativity of properties of space-time with respect
to the distribution of matter (Verozub, 2008).
It is well known that in general relativity that test

particles in gravitational field move on geodesics in a
Riemanannian space. Accordingly, one may figure out
that the differential equations for obtaining the met-
ric tensor gµν(x) of any distribution of matter must
keep the geodesic equations invariant under coordinate
transformations. Surprisingly, it can be found that
these equations are also invariant under geodesic map-
ping of space time V into V̄ upon replacing Γµαβ → Γ̄µαβ
of the Christoffel symbols in any fixed coordinate sys-
tem to become

Γ̄µαβ = Γµαβ + δµαϕβ + δµβϕα (35)

where ϕµ(x) is a vector field. Moreover, transforma-
tions of the metric tensors are obtained by solving the
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partial differential equation

ḡµν;α = 2ϕα(x)ḡβγ(x) + ϕβ(x)ḡγα(x) + ϕγ(x)ḡαβ(x),
(36)

in which the semi-colon is related here to the covariant
derivative of V .
Thus, this field can be expressed in a Riemannian

space in terms of two metrics before and after the
geodesic mapping of from one space time into another
in the following way:

ϕα =
1

n+ 1
(Γ̄µαµ − Γµαµ) =

1

2(n+ 1)

∂

∂xα
ln| ḡ

g
|. (37)

Thus, Verozub’s version of bimetric theory of grav-
ity has two important results, geodesic transformations
are playing the role of gauge transformations while co-
ordinates transformation are acting the same way as
in electrodynamics. It also gives a full description of
motion of small particles of a perfect isentropic fluid
able to describe gravity in strong gradational fields of
a super-massive black hole Sgr A* at the Galactic Cen-
ter. Also, the theory has neither singularities nor event
horizon.
From this perspective, we aim to study stability of

orbiting objects like S2 and binary pulsar PSR-J0737-
3039, by obtaining their geodesic and geodesic devia-
tions vectors.
Implementing Verzob’s version one can find that the
trajectories of a test particles are geodesics are in
the co-moving reference frame, (CRF), described by
gµν(ψ), such that ψµν is a tensor field of spin 2 gravity,
as found in Riemananain space of non zero curvature.
While, the same test particle is observed in an inertial
reference frame (IRF) as a point mass moves under the
influence of a force field ψµν , as existed in Minkwoskian
space (Verozub 2008).
Accordingly, the line element of the IRF is defined

as follows:
dσ2 = ηµν(x)dx

µdxν , (38)

where ηµν is the Minkowski metric and its correspond-
ing CRF line element is defined as

dS2 = gµν(ψ)dx
µdxν (39)

leading to define its corresponding affine connection:

Γ̄αβρ =
1

2
gαδ(ψ)(gβδ,ρ + gδρ,β − gβρ,δ).

Applying the Bazanski approach, we obtain geodesic
and geodesic deviation equations of Verozub’s version
for bimetric theory of gravity:

L(ψ) = gαβ(ψ)U
αDΨβ

DS
(40)

This can be seen clearly if one takes the variation with
respect to the deviation vector Ψρ to get the geodesic
equations:

dUα

dS
+ Γ̄αµν(ψ)U

µUν = 0 (41)

Also, the same technique can be applied to get the
variation with respect to the tangent vector Uρ to get
the geodesic deviation equations:

D2Ψα

DS2
= R̄α.βγδ(Ψ)ΨγUβUδ (42)

where R̄ is the Riemann Curvature described by the
affine connection Γ̄αβ.ρσ for the (CRF). Thus the stabil-
ity equation in this case becomes:

D2Ψα

DS2
= Ĥα

.γ(ψ)Ψ
γ . (43)

as Ĥα
.β is the stability tensor defined in CRF. Thus,

the deviation vector in CRF in Riemannian space can
be expressed as a separation vector of these particles
under the action of a force field ψµν in Minkowkian
space, which can be reduced to (Verozub, 2015):

∂2ηα

∂2τ
+

∂2U

∂xα∂xβ
ηβ = 0, (44)

where ηα = ∂xα

∂ξ , xµ = xµ(τ, ξ) such that ηα is the
separation vector and U is the gravitational potential
as measured in the flat space. If we apply the Wanas-
Bakry condition on the scalar of the separation vector
between two geodesics in a Minkowski space we can
easily find

q̃ = lim
τ→b̄

√
ηαηα

, where the solutions of η(τ) in a given interval [ā, b̄]
behave monotonically. If q̃ → ∞ then the system is
unstable, otherwise it is always stable. Consequently,
the strong stability condition becomes

lim
τ→∞

(ηαη
α) = 0. (45)

Accordingly, we can conclude that in a strong grav-
itational field, in covariant stability condition is
examined by obtaining the scalar value of its associ-
ated separation vectors as defined in IRF rather than
its equations. Such an approach gives the finiteness of
the scalar value for the separation vector an indicator
to decide whether the orbiting system is stable or not.

6. Discussion and concluding remarks

In this study,we have examined the stability of rotat-
ing objects in the presence of very strong gravitational
field. One of most promising theories is the bimetric
version of Verozub. The objects are considered as test
particles due to to the stringent condition m

M < 10−5,
e.g the S-stars are considered as test particles moving
on geodesics and acting as clocks for the SgrA*. It has
been assumed that the stability criterion may be es-
timated its status by extending the covariant stability
condition method of Wanas-Bakry to examine S-stars
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and PSR J0737-3039. The stability of these systems
are mainly dependent on obtaining the corresponding
deviation vectors and then finding their scalar value in
each case. Yet, an additive step may be obtained due
to Verozub’s bimetric theory, is the scalar part of the
separation vectors obtained in IRF as defined in flat
space is becoming a good candidate to examine the
stability condition.
Moreover, we have obtained a relationship be-

tween the spin tensor of a rotating object with its
corresponding deviation vector. This result leads to
identify the stability condition without finding out
the spin deviation vector as an indicator of stability
conditions, and examining only the stability condition
on their corresponding deviation vector. Accordingly,
we have obtained a quick method to estimate whether
the system is stable or not without going to lengthy
calculation to determine the scalar value for the spin
deviation vector, such an advantage works in favor
of testing stability conditions for S-stars or binary
pulsars orbiting SgrA*.
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