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ABSTRACT. It is known that in General relativity, for 

some spherically symmetric initial conditions, the 
massless scalar field (SF) experience the gravitational 
collapse (Choptuik, 1989), and arise a black hole (BH). 
According Bekenstein, a BH has no "hair scalar", so the 
SF is completely under the horizon. Thus, the study of the 
final stage for the gravitational collapse of a SF is reduced 
to the construction of a solution of Einstein's equations 
describing the evolution of a SF inside the BH. In this 
work, we build the Lagrangian for scalar and gravitational 
fields in the spherically symmetric case, when the metric 
coefficients and SF depends only on the time. In this case, 
it is convenient to use the methods of classical mechanics. 
Since the metric allows an arbitrary transformation of 
time, then the corresponding field variable (g00) is 
included in the Lagrangian without time derivative. It is a 
non-dynamic variable, and is included in the Lagrangian 
as a Lagrange multiplier. A variation of the action on this 
variable gives the constraint. It turns out that Hamiltonian 
is proportional to the constraint, and so it is zero. The 
corresponding Hamilton-Jacobi equation easily integrated. 
Hence, we find the relation between the SF and the metric. 
To restore of time dependence we using an equation 

qSqL  //   After using a gauge condition, it allows 
us to find solution. Thus, we find the evolution of the SF 
inside the BH, which describes the final stage of the 
gravitational collapse of a SF. It turns out that the mass 
BH associated with a scalar charge G of the corresponding 
SF inside the BH ratio M = G/(2√κ). 
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1. Introduction 
 
One of the most interesting objects in astrophysical and 

cosmological applications of General relativity (GR) is a 
scalar field. However, the models with scalar field known 
only for the simplest configurations, due to the difficulties 
of obtaining analytical solutions. So for a massless scalar 
field in General relativity is widely known spherically 
symmetric static solution of Fisher (1948) and its various 
later modifications (Janis, Newman, Winicour (1968); 
Wyman (1981); Agnese and La Camera. (1985)). 
Analytical solutions for the system of static scalar and 
electromagnetic fields in General relativity for spherical 
symmetry built Bronnikov (1972), Zaitsev, Kolesnikov 
and Radynov (1972), and then Korkina (1976) in different 
coordinate systems. All these solutions are unstable and 

have naked singularity. It turns out that for systems with a 
scalar field analogue of Birkhoff theorem on the 
uniqueness of the solution fails, and in addition, there is 
no conserved scalar charge. Therefore, a static 
configuration with a scalar field which satisfies the 
Einstein equations, due to negligible fluctuations, coming 
out of this mode and begins to evolve. 

For dynamic spherically symmetric problems, due to 
the obvious difficulties in obtaining solutions of Einstein's 
equations in closed form, most of the work performed 
numerically. Roberts (1989) has built one of the few 
analytical solutions in closed form. Initially, he scheduled 
to use it as a counter-example to the hypothesis of cosmic 
censorship. However, later Brady (1994); Oshiro, 
Nakamura and Tomimatsu (1994) rediscovered this 
solution in the context of critical gravitational collapse  

Spherically symmetric collapse of a scalar field is the 
perfect model for studying the dynamics of strong field in 
general relativity. Therefore, in this model used analytical 
and numerical methods. In particular, Christodoulou 
(1987) rigorously established global existence and 
uniqueness of solutions of the Einstein equations for a 
scalar field. He proved that the space of General relativity 
together with spherically symmetric scalar field with a 
sufficiently weak (in some sense) initial data evolves in 
Minkowski space-time, while the class sufficiently strong 
data forms a BH. 

The behavior of the scalar field near the threshold of 
BH formation was first investigated Choptuik (1993). He 
numerically solved the Einstein equations for spherically 
symmetric systems of the gravitational and massless scalar 
fields with minimal coupling. He studied the gravitational 
collapse for different sets of one-parameter families of the 
initial data. For example, they can be taken as a family of 
Gaussian pulses 

)(exp(),0( 22
0

2
/)   p .  

Suppose that for a given family the parameter p is chosen 
in such a way that for small values of p the gravitational 
field in during the evolution of is too weak to form a BH 
(the field is scattered), while for large values of parameter 
p is formed BH. Then between these two limits, there is a 
critical value of this parameter p* in which first formed 
the BH. Solutions for which p < p* are called subcritical 
and solving for p > p* – supercritical, respectively. 
Choptuik proved that in the collapse may occur arbitrarily 
small BH. Moreover, when p > p* the mass of the BH is 
given by  
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*)( pppM BH  ,    

where the exponent β has a universal value   0.374 for 
all 1-parameter families of scalar field data. There are still 
a number of other features critical gravitational collapse of 
a scalar field, for example, discrete and continuous self-
similarity, and others. Work Choptuik is an example of 
when the discovery of a new phenomenon in General 
relativity was done numerically. The discovery of 
universal properties of critical collapse is one of 
significant achievements the numerical relativity 
(Novikov & Frolov, 2001). 

 
2. The action and its reduction 
 
Consider the evolution of spherically symmetric 

massless scalar field in the supercritical case, when p > p*. 
In this case, at the final stage of the gravitational collapse 
is formed the black hole with a mass )( pBHM . The 
residual relaxation phenomena associated with scattering 
of the remnants of the scalar field at infinity, do not affect 
the black hole and can be ignored.  

According to the no-hair theorem Chase (1970) and 
Bekenstein (1972), the BH has no of neutral "scalar hairs" 
(as, indeed, and charged), therefore on the final stage of 
the gravitational collapse a scalar field is completely 
under the horizon, inside a black hole. Beyond the BH, we 
have the free vacuum gravitational field described by the 
Schwarzschild solution. Thus, the study of the final stage 
the gravitational collapse a scalar field, by definition, is to 
construction of the solution of Einstein equations 
describing the evolution of scalar field inside the BH and 
satisfying appropriate boundary conditions. 

In view with the above, we assume that the space-time 
inside a BH is described by the spherically symmetric 
metric, depending on time 

2)(2)(22)(2  dedredtceds ttt  ,   
2222 sin  ddd  .    

For simplicity, consider the evolution of the homogeneous 
scalar field ψ = ψ(t). Note that the metric admits an 
arbitrary gauge transformation time  )~(ttt  , which 
induces the transformation of the metric coefficient 

 2~ ~/ tddtee    .Thus, there is a gauge arbitrariness in 

the definition of the metric function 2Ne  . 
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where the point denotes 0/ dxd . After the integration over 
the angles, the action takes the form 
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Since the Lagrangian and the field variables is 
independent from the coordinate r, it possible to be 
limited to the one-dimensional system with the action  


0~ LdxS .    

Extracting total time derivative, we obtain an effective 
Lagrangian 
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For diagonalization of the Lagrangian, we make a 
change of field variables  

   ,    .  
Then 
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In the new variables, the metric takes the form 

  22222 drededtceeds     .  
 
3. The equation of Hamilton-Jacobi in the 

minisuperspace 
 
To solve the problem under consideration is convenient 

to use the methods of classical mechanics. From the point 
of view of the classical mechanics, the metric coefficients 
and a scalar field in the resulting Lagrangian are the 
generalized coordinates (coordinates of a minisuperspace 
Wheeler-DeWitt). 

Note that the metric allows arbitrary gauge 
transformation of time, and the corresponding metric 
variable e  enters the Lagrangian without time 
derivative. Therefore, it is a non-dynamic variable and is 
included in the Lagrangian as the Lagrange multiplier. 
Variation of the Lagrangian on this variable gives us the 
constraint: 
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Next, we find momenta, conjugate of the dynamic 
variables },,{  : 
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and Hamiltonian 
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Comparing the Hamiltonian with the constraint, it is easy 
to see that they are proportional 
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Hence, by virtue of Lagrangian constraint ∂L / ∂ρ = 0 it 
follow the Hamiltonian constraint 
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The latter is a consequence of the invariance of the theory 
with respect to gauge transformations )~(ttt   Next, 
substituting momenta 
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in the Hamiltonian constraint, we come to the Hamilton-
Jacobi  equation (HJE) 
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This equation is one-dimensional minisuperspace 
analogue of the Peres equation in the functional 

derivatives in a superspace. The variable 2/e  is not 
included in the GJE and is not related with the 
minisuperspace dynamics. Thus, the 3-geometry 

minisuperspace with coordinates , 
e , 

e is defined by 
diffeomorphic invariant way. It is easy to see that this 
equation is the GJE for the geodesic in minisuperspace in 
terms minisupermetric (in a potential space). Indeed, let us 
rewrite the action for the diagonalized Lagrangian 

 


 .
2

)(
82

02/
4

2/22
3

2

2

][ )(~ dxe
k

c
e

k

c

c
S




 


 

Nondynamical variable can be eliminated. In order to do 
this we find the variable 2/e  from the constraint 
equation 
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and substitute into the action. The result is 
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From here we have 
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It is easy to show that the equations resulting from the 
variational principle δS = 0 together with the constraint 
are equivalent to the Einstein equations for the original 

metric. Taking the differential from the action and placed 
in the square, we obtain the interval in a minisuperspace 
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4. Solutions of the Hamilton-Jacobi equation 
 
We are searching the solution GJE in the form  

)( VbaS  . 

Then the function V(ω)is determined by the integral 
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Thus, we find for the action 
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we find the connection between the scalar field  and 
metric functions λ, e  In order to restore the time 
dependence, we use the equation  
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As a result, we obtain  
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Hence we obtain the equation 
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Thus the metric takes the form  

   22222222 dredtcBdtceeds     .  

Furthermore, we find the remaining variables φ and λ, 
as function of time t. From the relations 
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Thus, the metric and the scalar field inside the BH take 
the form 
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5. Determination constants 
 
To find the constant, we can use the correspondence 

principle. When the scalar field vanishes, the resulting 
solution should be the same with the Schwarzschild 
solution in the T-region. Therefore, we put b0, 0 0. 
Then 
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This metric coincides with the Schwarzschild solution 

222
1

2
22

2
2 2

1
2

1 dRdR
Rc

km
dtc

Rc

km
ds 

















   

in the T-region, when we replace cT  R, r ct and choice 
the constants N 1, 2/mca   . Thus, the solution can 
be written in the form 
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where we introduced the scalar charge G cb. 
 
6. Conclusion 
 
In the obtained solution about free scalar field, except 

the scalar charge, any other constants should not be. 
Therefore, we should put m 0 andp0. Then we have 
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In this case, the metric and scalar field take the form 
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where we have introduced the constant  
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We take into account that at a maximum expansion (at the 
boundary of BH), when Gtt  , the scalar field vanishes, 

00  . This metric correspond the scalar field 
confinement under the horizon BH by the gravitational 
interaction.  

Note that the spatial part of the metric describes a 

metric of hypercylinder 1R ⊗ 2S . 
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Here 22 ttcR G   is the radius of hypercylinder, 

which when time changing within GG ttt   first 

increases 0 R c Gt , and then decreases c Gt  R 0. At 

t Gt  we have a singularity. The radius R  Gt  
corresponds to the horizon in the Schwarzschild metric. 

Note that this solution has an analogue in the R-region, 
which are considered by Denisova at al (1999). Their 
metrics can be rewritten as 
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and physically is not connected with the interior of a black 
hole with collapsing scalar field, because it is another 
solution. 

Note that after replacing the time coordinate 

22
ttT G  , GtT 0 , 

the obtained metric inside a BH with a scalar field takes 
the form  

2222
2

22
2

1/
dTcdr

Tt

dTc
ds

G




 . 

It turns out that scalar curvature 
 gR  and Krechman 

invariant 
 RRK   on the boundary 0t  

)( GtT   are the finite quantities, while in the center, 

when Gtt   (T = 0) they go to infinity. Since the 

boundary 0t  )( GtT   is regular, therefore it can be 
matched with the external vacuum solution for the BH, i.e. 
with the Schwarzschild metric. From the matched 
condition of the angular parts of the metrics, we obtain the 
relation between the scalar charge G, collapsed scalar 
field, and the BH mass M: 

kMG 2 .    

Note that the mass function 

  2
2

1
2

RR
k

c
M  , 

for the given solution takes the form 

22

222

2 ttc

tc

k

c
M

G

G


 . 

Hence, at the boundary value of time t = 0, we have 

k

G
ct

k

c
M G

22
)0(

2

 . 

This again confirms the connection the BH mass with the 
scalar charge into the BH. In the center of t tG and mass 
function diverge. 

 
Figure 1: The behavior of the mass function and the 
hypercylinder radius in universe with homogeneous scalar 
field. 

 
 
The behavior of the mass function and the 

hypercylinder radius represented on the figure 1. 
Here, the ordinate represents time t, and abscissa is the 

radius of hypercylinder R and the mass function M. We 
see that when the time changes from Gt  to 

33 /2/ ckMcGktG   the hypercylinder radius grows 
from zero, reaches the maximum is equal to 

22 /2/ ckMcGkctG   at t = 0 and then decreases 
again to zero. At the same time the mass function 
simultaneously decreases and reaches a minimum is equal 

of the mass BHG MkGktcM  2/2/)0( 3  external 
BH at  t = 0 is and rises again to infinity. 

Therefore, we obtained formulas describing the 
evolution of the homogeneous scalar field inside the BH. 
It corresponds to the final stage of the gravitational 
collapse some scalar field with such initial conditions that 
lead to the homogeneous distribution of the scalar field 
inside the BH. 
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