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ABSTRACT. We discuss possible connections be-
tween several scales in particle physics and cosmology,
such the the electroweak, inflation, dark energy and
Planck scales. We then describe the phenomenology of
a model of supersymmetry breaking in the presence of
a tiny (tunable) positive cosmological constant. The
model is coupled to the MSSM, leading to calculable
soft supersymmetry breaking masses and a distinct
low energy phenomenology that allows to differentiate
it from other models of supersymmetry breaking and
mediation mechanisms.
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1. Introduction

If String Theory is a fundamental theory of Nature
and not just a tool for studying systems with strongly
coupled dynamics, it should be able to describe at
the same time particle physics and cosmology, which
are phenomena that involve very different scales from
the microscopic four-dimensional (4d) quantum grav-
ity length of 10−33 cm to large macroscopic distances of
the size of the observable Universe ∼1028 cm spanned a
region of about 60 orders of magnitude. In particular,
besides the 4d Planck mass, there are three very dif-
ferent scales with very different physics corresponding
to the electroweak, dark energy and inflation. These
scales might be related via the scale of the underly-
ing fundamental theory, such as string theory, or they
might be independent in the sense that their origin
could be based on different and independent dynam-
ics. An example of the former constrained and more
predictive possibility is provided by TeV strings with
a fundamental scale at low energies due for instance to
large extra dimensions transverse to a four-dimensional
braneworld forming our Universe [1]. In this case,
the 4d Planck mass is emergent from the fundamental
string scale and inflation should also happen around
the same scale [2]. We will first review this possibility,
focussing on its compatibility with cosmological obser-
vations.

We will then adopt a second more conservative ap-
proach, assuming that all three scales have an inde-
pendent dynamical origin. Moreover, we will assume
the presence of low energy supersymmetry that allows
for an elegant solution of the mass hierarchy problem,
a unification of fundamental forces as indicated by low
energy data and a natural dark matter candidate due to
an unbroken R-parity. The assumption of independent
scales implies that supersymmetry breaking should be
realized in a metastable de Sitter vacuum with an in-
finitesimally small (tunable) cosmological constant in-
dependent of the supersymmetry breaking scale that
should be in the TeV region. In a recent work [3],
we studied a simple N = 1 supergravity model hav-
ing this property and motivated by string theory. Be-
sides the gravity multiplet, the minimal field content
consists of a chiral multiplet with a shift symmetry
promoted to a gauged R-symmetry using a vector mul-
tiplet. In the string theory context, the chiral mul-
tiplet can be identified with the string dilaton (or an
appropriate compactification modulus) and the shift
symmetry associated to the gauge invariance of a two-
index antisymmetric tensor that can be dualized to a
(pseudo)scalar. The shift symmetry fixes the form of
the superpotential and the gauging allows for the pres-
ence of a Fayet-Iliopoulos (FI) term, leading to a super-
gravity action with two independent parameters that
can be tuned so that the scalar potential possesses a
metastable de Sitter minimum with a tiny vacuum en-
ergy (essentially the relative strength between the F-
and D-term contributions). A third parameter fixes the
Vacuum Expectation Value (VEV) of the string dila-
ton at the desired (phenomenologically) weak coupling
regime. An important consistency constraint of our
model is anomaly cancellation which has been studied
in [5] and implies the existence of additional charged
fields under the gauged R-symmetry.

In a more recent work [6], we analyzed a small vari-
ation of this model which is manifestly anomaly free
without additional charged fields and allows to couple
in a straight forward way a visible sector containing
the minimal supersymmetric extension of the Standard
Model (MSSM) and studied the mediation of super-
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symmetry breaking and its phenomenological conse-
quences. It turns out that an additional ‘hidden sector’
field z is needed to be added for the matter soft scalar
masses to be non-tachyonic; although this field partic-
ipates in the supersymmetry breaking and is similar to
the so-called Polonyi field, it does not modify the main
properties of the metastable de Sitter (dS) vacuum.
All soft scalar masses, as well as trilinear A-terms, are
generated at the tree level and are universal under the
assumption that matter kinetic terms are independent
of the ‘Polonyi’ field, since matter fields are neutral
under the shift symmetry and supersymmetry break-
ing is driven by a combination of the U(1) D-term and
the dilaton and z-field F-term. Alternatively, a way to
avoid the tachyonic scalar masses without adding the
extra field z is to modify the matter kinetic terms by
a dilaton dependent factor.
A main difference of the second analysis from the

first work is that we use a field representation in which
the gauged shift symmetry corresponds to an ordinary
U(1) and not an R-symmetry. The two representa-
tions differ by a Kähler transformation that leaves
the classical supergravity action invariant. However,
at the quantum level, there is a Green-Schwarz term
generated that amounts an extra dilaton dependent
contribution to the gauge kinetic terms needed to
cancel the anomalies of the R-symmetry. This creates
an apparent puzzle with the gaugino masses that
vanish in the first representation but not in the latter.
The resolution to the puzzle is based to the so called
anomaly mediation contributions [7, 8] that explain
precisely the above apparent discrepancy. It turns out
that gaugino masses are generated at the quantum
level and are thus suppressed compared to the scalar
masses (and A-terms).

2. Effective Planck mass and the inflation
scale

Low scale gravity with large extra dimensions is ac-
tually a particular case of a more general framework,
where the UV cutoff is lower than the Planck scale due
to the existence of a large number of particle species
coupled to gravity [9]. Indeed, it was shown that the
effective UV cutoff MUV is given by

M2
UV =M2

P /N , (1)

where the counting of independent species N takes into
account all particles which are not broad resonances,
having a width less than their mass. For instance, in
braneworld gravity with n large extra dimensions of av-
erage size R, the particle species are the Kaluza-Klein
(KK) excitations of the graviton (and other possible
bulk modes), whose number at a given energy scale E∗
is given by

N ≃ RnEn∗ . (2)

Here, we work out the consequences of this scale de-
pendence of the strength of gravity for inferring var-
ious quantities during inflation [2], which we take to
be driven by a single field for economy of discussion
and because the data doesn’t compel us to consider
otherwise [10]. As is to be expected, all dimensionless
observables such as the amplitude and spectral proper-
ties of the perturbations are unaffected by the changing
strength of gravity at inflationary energies. However,
when one tries to infer an absolute energy scale for
inflation, one finds that it is undetermined commen-
surate with (1) up to the unknown spectrum of uni-
versally coupled species between laboratory scales and
the inflationary scale, the details of which we elaborate
upon in the following.
According to the inflationary paradigm, the primor-

dial perturbations observed in the CMB were created
at horizon crossing during the quasi de Sitter (dS)
phase of early accelerated expansion sourced by the
inflaton field. Therefore all quantities that enter cal-
culations of primordial correlation functions (which we
subsequently relate to observables in the CMB) refer
to quantities at the scale at which inflation occurred.
We denote all quantities measured at the scale of in-
flation with a starred subscript. The dominant con-
tribution to the temperature anisotropies comes from
adiabatic perturbations 1 sourced by the comoving cur-
vature perturbation R, defined as the conformal factor
of the 3-metric hij in comoving gauge:

hij(t, x) = a2(t)e2R(t,x)ĥij ; ĥij := exp[γij ] (3)

with ∂iγij = γii = 0 defining transverse traceless gravi-
ton perturbations. The temperature anisotropies are
characterized by the dimensionless power spectrum for
R, whose amplitude is given by

PR :=
H2

∗
8π2M2

∗ ϵ∗
= A× 10−10, (4)

where ϵ∗ := −Ḣ∗/H
2
∗ , H∗ being the Hubble factor dur-

ing inflation. Given that R is conserved on super-
horizon scales (in the absence of entropy perturba-
tions), this immediately relates to the amplitude of the
late time CMB anisotropies, which fixesA ∼ 22.15 [10].
The tensor anisotropies are characterized by the tensor
power spectrum

Pγ := 2
H2

∗
π2M2

∗
, (5)

Taking the ratio of the above with (4), we find the
tensor to scalar ratio

r∗ :=
Pγ
PR

= 16ϵ∗. (6)

1In what follows, we assume that all of the extra species have
sufficiently suppressed couplings to the inflaton during inflation
(e.g. either through derivative couplings or as Planck suppressed
interactions) so that isocurvature perturbations are not signifi-
cantly generated. This is trivially true for hidden sector fields.
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Therefore any determination of r∗, either through di-
rect measurements of the stochastic background of pri-
mordial gravitational waves or through their secondary
effects on the polarization of the CMB [11, 12, 13] al-
lows us in principle to fix the scale of inflation:

H∗ =M∗

(
π2Ar∗
2 · 1010

)1/2

:= Υ = 1.05
√
r∗ × 10−4. (7)

We see that any measurements of r∗ determines the
scale of inflation up to our ignorance of the effective
strength of gravity at the scale H∗, given byM∗ ∼ MP√

N
,

where N is the effective number of all universally cou-
pled species up to the scale H∗– whether they exist in
the visible sector or in any hidden sector. Note that
as one lowers the scale of strong gravity, the maximum
reheating temperature Ti is necessarily lowered as well,
since it cannot be higher than the inflation scale. Con-
servatively, Ti cannot be too far below the TeV scale
without spoiling the standard scenarios of big bang
cosmology– in particular, mechanisms for Leptogene-
sis and Baryogenesis which can occur no lower than
the electroweak scale [14]. We note as a consistency
check on the above considerations, that although addi-
tional species increase the strength of gravity, the ratio
H2

∗/M
2
∗ is independent of N and is fixed by observ-

able quantities. Therefore the effects of strong gravity
are evidently negligible during inflation even if M∗ is
much smaller than the macroscopic strength of gravity
Mpl. Hence inflationary dynamics, in particular the
dynamics of adiabatic fluctuations remain weakly cou-
pled independent of N and the usual computation of
adiabatic correlators can be implemented [15].
In the case of extra species as KK graviton modes,

the fundamental higher-dimensional gravity scale (1)
with N given in (2) for E∗ = MUV leads to the usual
relation between the 4d and (4 + n) d Planck scales

M2
P =M2+n

UV Rn . (8)

On the other hand, during inflation N counts all KK
states with mass less than the Hubble scale H∗:

N = (H∗R)
n , (9)

and the effective gravity scale becomes

M∗ =MP /
√
N =MUV (MUV /H)n/2 , (10)

where we used the relations (8) and (10). Equation (7)
then yields:

H∗ =M∗Υ =MUV (MUV /H)n/2Υ ⇒ MUVΥ
2/(n+2) ,

(11)
where we used eq. (10). It follows that H∗ is one to
three orders of magnitude below the fundamental grav-
ity scaleMUV for the range 0.001 <∼ r∗ <∼ 0.1. The ratio
H∗/M∗ is of course fixed by (7). The inflation scale H∗

can then be as low as the weak scale in low scale gravity
models with large extra dimensions, consistently with
observations.
In the following, we assume that the electroweak,

inflation, gravity and dark energy scales have an
independent dynamical origin and examine the corre-
sponding conditions to the microscopic theories. More
precisely, we address the question of supersymmetry
breaking in dS space with an infinitesimal (tunable)
cosmological constant.

3. Conventions

Throughout this paper we use the conventions of
[16]. A supergravity theory is specified (up to Chern-
Simons terms) by a Kähler potential K, a superpoten-
tial W , and the gauge kinetic functions fAB(z). The
chiral multiplets zα, χα are enumerated by the index
α and the indices A,B indicate the different gauge
groups. Classically, a supergravity theory is invariant
under Kähler tranformations, viz.

K(z, z̄) −→ K(z, z̄) + J(z) + J̄(z̄),

W (z) −→ e−κ
2J(z)W (z), (12)

where κ is the inverse of the reduced Planck mass,
mp = κ−1 = 2.4 × 1015 TeV. The gauge transforma-
tions of chiral multiplet scalars are given by holomor-
phic Killing vectors, i.e. δzα = θAkαA(z), where θ

A is
the gauge parameter of the gauge group A. The Kähler
potential and superpotential need not be invariant un-
der this gauge transformation, but can change by a
Kähler transformation

δK = θA [rA(z) + r̄A(z̄)] , (13)

provided that the gauge transformation of the super-
potential satisfies δW = −θAκ2rA(z)W . One then has
from δW =Wαδz

α

Wαk
α
A = −κ2rAW, (14)

where Wα = ∂αW and α labels the chiral multiplets.
The supergravity theory can then be described by a
gauge invariant function

G = κ2K + log(κ6WW̄ ). (15)

The scalar potential is given by

V = VF + VD

VF = eκ
2K

(
−3κ2WW̄ +∇αWgαβ̄∇̄β̄W̄

)
VD =

1

2
(Ref)

−1 AB PAPB , (16)

where W appears with its Kähler covariant derivative

∇αW = ∂αW (z) + κ2(∂αK)W (z). (17)



The moment maps PA are given by

PA = i(kαA∂αK − rA). (18)

In this paper we will be concerned with theories
having a gauged R-symmetry, for which rA(z) is given
by an imaginary constant rA(z) = iκ−2ξ. In this case,
κ−2ξ is a Fayet-Iliopoulos [17] constant parameter.

4. The model

The starting point is a chiral multiplet S and a vector
multiplet associated with a shift symmetry of the scalar
component s of the chiral multiplet S

δs = −icθ , (19)

and a string-inspired Kähler potential of the form
−p log(s + s̄). The most general superpotential is ei-
ther a constant W = κ−3a or an exponential superpo-
tential W = κ−3aebs (where a and b are constants).
A constant superpotential is (obviously) invariant un-
der the shift symmetry, while an exponential superpo-
tential transforms as W → We−ibcθ, as in eq. (14).
In this case the shift symmetry becomes a gauged R-
symmetry and the scalar potential contains a Fayet-
Iliopoulos term. Note however that by performing a
Kähler transformation (12) with J = κ−2bs, the model
can be recast into a constant superpotential at the cost
of introducing a linear term in the Kähler potential
δK = b(s + s̄). Even though in this representation,
the shift symmetry is not an R-symmetry, we will still
refer to it as U(1)R. The most general gauge kinetic
function has a constant term and a term linear in s,
f(s) = δ + βs.
To summarise,2

K(s, s̄) = −p log(s+ s̄) + b(s+ s̄),

W (s) = a,

f(s) = δ + βs , (20)

where we have set the mass units κ = 1. The constants
a and b together with the constant c in eq. (19) can
be tuned to allow for an infinitesimally small cosmo-
logical constant and a TeV gravitino mass. For b > 0,
there always exists a supersymmetric AdS (anti-de Sit-
ter) vacuum at ⟨s + s̄⟩ = b/p, while for b = 0 (and
p < 3) there is an AdS vacuum with broken supersym-
metry. We therefore focus on b < 0. In the context of
string theory, S can be identified with a compactifica-
tion modulus or the universal dilaton and (for negative
b) the exponential superpotential may be generated by
non-perturbative effects.

2In superfields the shift symmetry (19) is given by δS = −icΛ,
where Λ is the superfield generalization of the gauge parameter.
The gauge invariant Kähler potential is then given by K(S, S̄) =
−pκ−2 log(S + S̄ + cVR) + κ−2b(S + S̄ + cVR), where VR is the
gauge superfield of the shift symmetry.

The scalar potential is given by:

V = VF + VD

VF = a2e
b
l lp−2

{
1

p
(pl − b)2 − 3l2

}
l = 1/(s+ s̄)

VD = c2
l

β + 2δl
(pl − b)2 (21)

In the case where S is the string dilaton, VD can be
identified as the contribution of a magnetized D-brane,
while VF for b = 0 and p = 2 coincides with the tree-
level dilaton potential obtained by considering string
theory away its critical dimension [18]. For p ≥ 3 the
scalar potential V is positive and monotonically de-
creasing, while for p < 3, its F-term part VF is un-
bounded from below when s + s̄ → 0. On the other
hand, the D-term part of the scalar potential VD is
positive and diverges when s + s̄ → 0 and for vari-
ous values for the parameters an (infinitesimally small)
positive (local) minimum of the potential can be found.
If we restrict ourselves to integer p, tunability of the

vacuum energy restricts p = 2 or p = 1 when f(s) = s,
or p = 1 when the gauge kinetic function is constant.
For p = 2 and f(s) = s, the minimization of V yields:

b/l = α ≈ −0.183268 , p = 2 (22)

a2

bc2
= A2(α) +B2(α)

Λ

b3c2
≈ −50.6602 +O(Λ) (23)

where Λ is the value of V at the minimum (i.e. the
cosmological constant), α is the negative root of the
polynomial −x5+7x4−10x3−22x2+40x+8 compatible
with (23) for Λ = 0 and A2(α), B2(α) are given by

A2(α) = 2e−α
−4 + 4α− α2

α3 − 4α2 − 2α
; B2(α) = 2

α2e−α

α2 − 4α− 2
(24)

It follows that by carefully tuning a and c, Λ can be
made positive and arbitrarily small independently of
the supersymmetry breaking scale. A plot of the scalar
potential for certain values of the parameters is shown
in figure 1.
At the minimum of the scalar potential, for nonzero

a and b < 0, supersymmetry is broken by expectation
values of both an F and D-term. Indeed the F-term
and D-term contributions to the scalar potential are

VF |s+s̄=α
b

=
1

2
a2b2eα

(
1− 2

α

)2

> 0,

VD|s+s̄=α
b

=
b3c2

α

(
1− 2

α

)2

> 0 . (25)

The gravitino mass term is given by

(m3/2)
2 = eG =

a2b2

α2
eα . (26)

Due to the Stueckelberg coupling, the imaginary part
of s (the axion) gets eaten by the gauge field, which ac-
quires a mass. On the other hand, the Goldstino, which
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Figure 1: A plot of the scalar potential for p = 2,
b = −1, δ = 0, β = 1 and a given by equation (23) for
c = 1 (black curve) and c = 0.7 (red curve).

is a linear combination of the fermion of the chiral mul-
tiplet χ and the gaugino λ gets eaten by the gravitino.
As a result, the physical spectrum of the theory con-
sists (besides the graviton) of a massive scalar, namely
the dilaton, a Majorana fermion, a massive gauge field
and a massive gravitino. All the masses are of the same
order of magnitude as the gravitino mass, proportional
to the same constant a (or c related by eq. (23) where
b is fixed by eq. (22)), which is a free parameter of
the model. Thus, they vanish in the same way in the
supersymmetric limit a→ 0.

The local dS minimum is metastable since it can tun-
nel to the supersymmetric ground state at infinity in
the s-field space (zero coupling). It turns out however
that it is extremely long lived for realistic perturbative
values of the gauge coupling l ≃ 0.02 and TeV grav-
itino mass and, thus, practically stable; its decay rate
is [5]:

Γ ∼ e−B with B ≈ 10300 . (27)

5. Coupling a visible sector

The guideline to construct a realistic model keeping
the properties of the toy model described above is to
assume that matter fields are invariant under the shift
symmetry (19) and do not participate in the super-
symmetry breaking. In the simplest case of a canon-
ical Kähler potential, MSSM-like fields ϕ can then be
added as:

K = −κ−2 log(s+ s̄) + κ−2b(s+ s̄) +
∑

φφ̄,

W = κ−3a+WMSSM , (28)

where WMSSM (ϕ) is the usual MSSM superpotential.
The squared soft scalar masses of such a model can
be shown to be positive and close to the square of
the gravitino mass (TeV2). On the other hand, for
a gauge kinetic function with a linear term in s, β ̸= 0
in eq. (20), the Lagrangian is not invariant under the

shift symmetry

δL = −θβc
8
ϵµνρσFµνFρσ. (29)

and its variation should be canceled. As explained in
Ref. [5], in the ’frame’ with an exponential superpo-
tential the R-charges of the fermions in the model can
give an anomalous contribution to the Lagrangian. In
this case the ‘Green-Schwarz’ term ImsF F̃ can cancel
quantum anomalies. However as shown in [5], with the
minimal MSSM spectrum, the presence of this term re-
quires the existence of additional fields in the theory
charged under the shift symmetry.
Instead, to avoid the discussion of anomalies, we fo-

cus on models with a constant gauge kinetic function.
In this case the only (integer) possibility3 is p = 1. The
scalar potential is given by (21) with β = 0, δ = p = 1.
The minimization yields to equations similar to (22),
(23) and (24) with a different value of α and functions
A1 and B1 given by:

b⟨s+ s̄⟩=α ≈ −0.233153

bc2

a2
=A1(α)+B1(α)

Λ

a2b
≈−0.359291+O(Λ)(30)

A1(α)= 2eαα
3− (α− 1)2

(α− 1)2
, B1(α) =

2α2

(α− 1)2
,

where α is the negative root of −3+(α−1)2(2−α2/2) =
0 close to −0.23, compatible with the second constraint
for Λ = 0. However, this model suffers from tachyonic
soft masses when it is coupled to the MSSM, as in
(28). To circumvent this problem, one can add an ex-
tra hidden sector field which contributes to (F-term)
supersymmetry breaking. Alternatively, the problem
of tachyonic soft masses can also be solved if one al-
lows for a non-canonical Kähler potential in the visible
sector, which gives an additional contribution to the
masses through the D-term.
Let us discuss first the addition of an extra hidden

sector field z (similar to the so-called Polonyi field [19]).
The Kähler potential, superpotential and gauge kinetic
function are given by

K = −κ−2 log(s+ s̄) + κ−2b(s+ s̄) + zz̄ +
∑

φφ̄ ,

W = κ−3a(1 + γκz) +WMSSM(φ) ,

f(s) = 1 , fA = 1/g2A , (31)

where A labels the Standard Model gauge group fac-
tors and γ is an additional constant parameter. The
existence of a tunable dS vacuum with supersymmetry

3If f(s) is constant, the leading contribution to VD when s+
s̄ → 0 is proportional to 1/(s+s̄)2, while the leading contribution
to VF is proportional to 1/(s + s̄)p. It follows that p < 2; if
p > 2, the potential is unbounded from below, while if p = 2,
the potential is either positive and monotonically decreasing or
unbounded from below when s+ s̄ → 0 depending on the values
of the parameters.

Odessa Astronomical Publications, vol. 28/2 (2015) 109



breaking and non-tachyonic scalar masses implies that
γ must be in a narrow region:

0.5 <∼ γ <∼ 1.7 . (32)

In the above range of γ the main properties of the toy
model described in the previous section remain, while
Rez and its F-auxiliary component acquire non van-
ishing VEVs. All MSSM soft scalar masses are then
equal to a universal value m0 of the order of the grav-
itino mass, while the B0 Higgs mixing parameter is also
of the same order:

m2
0 = m2

3/2

[
(σs + 1) +

(γ + t+ γt)2

(1 + γt)2

]
,

A0 = m3/2

[
(σs + 3) + t

(γ + t+ γt2)

1 + γt

]
,

B0 = m3/2

[
(σs + 2) + t

(γ + t+ γt2)

(1 + γt)

]
, (33)

where σs = −3+(α−1)2 with α and t ≡ ⟨Re z⟩ deter-
mined by the minimization conditions as functions of
γ. Also, A0 is the soft trilinear scalar coupling in the
standard notation, satisfying the relation [20]

A0 = B0 +m3/2 . (34)

On the other hand, the gaugino masses appear to
vanish at tree-level since the gauge kinetic functions
are constants (see (31)). However, as mentioned in
Section , this model is classically equivalent to the the-
ory4

K = −κ−2 log(s+ s̄) + zz̄ +
∑
α

φφ̄,

W =
(
κ−3a(1 + z) +WMSSM(φ)

)
ebs , (35)

obtained by applying a Kähler transformation (12)
with J = −κ−2bs. All classical results remain the
same, such as the expressions for the scalar poten-
tial and the soft scalar masses (33), but now the shift
symmetry (19) of s became a gauged R-symmetry
since the superpotential transforms asW −→We−ibcθ.
Therefore, all fermions (including the gauginos and the
gravitino) transform5 as well under this U(1)R, lead-
ing to cubic U(1)3R and mixed U(1) × GMSSM anoma-
lies. These anomalies are cancelled by a Green-Schwarz
(GS) counter term that arises from a quantum correc-
tion to the gauge kinetic functions:

fA(s) = 1/g2A + βAs with βA =
b

8π2
(TRA

− TGA
) ,

(36)

4This statement is only true for supergravity theories with a
non-vanishing superpotential where everything can be defined in
terms of a gauge invariant function G = κ2K+log(κ6WW̄ ) [21].

5The chiral fermions, the gauginos and the gravitino carry a
charge bc/2, −bc/2 and −bc/2 respectively.

where TG is the Dynkin index of the adjoint repre-
sentation, normalized to N for SU(N), and TR is the
Dynkin index associated with the representation R of
dimension dR, equal to 1/2 for the SU(N) fundamen-
tal. An implicit sum over all matter representations is
understood. It follows that gaugino masses are non-
vanishing in this representation, creating a puzzle on
the quantum equivalence of the two classically equiva-
lent representations. The answer to this puzzle is based
on the fact that gaugino masses are present in both rep-
resentations and are generated at one-loop level by an
effect called Anomaly Mediation [7, 8]. Indeed, it has
been argued that gaugino masses receive a one-loop
contribution due to the super-Weyl-Kähler and sigma-
model anomalies, given by [8]:

M1/2 = − g2

16π2
×
[
(3TG − TR)m3/2 + (TG − TR)KαFα

+2
TR
dR

(log detK|R ′′),αF
α

]
. (37)

The expectation value of the auxiliary field Fα, evalu-
ated in the Einstein frame is given by

Fα = −eκ
2K/2gαβ̄∇̄β̄W̄ . (38)

Clearly, for the Kähler potential (31) or (35) the last
term in eq. (37) vanishes. However, the second term
survives due to the presence of Planck scale VEVs for
the hidden sector fields s and z. Since the Kähler po-
tential between the two representations differs by a lin-
ear term b(s+ s̄), the contribution of the second term
in eq. (37) differs by a factor

δmA =
g2A
16π2

(TG − TR)be
κ2K/2gαβ̄∇̄β̄W̄ , (39)

which exactly coincides with the ‘direct’ contribution
to the gaugino masses due to the field dependent gauge
kinetic function (36) (taking into account a rescaling
proportional to g2A due to the non-canonical kinetic
terms).
We conclude that even though the models (31) and

(35) differ by a (classical) Kähler transformation, they
generate the same gaugino masses at one-loop. While
the one-loop gaugino masses for the model (31) are
generated entirely by eq. (37), the gaugino masses for
the model (35) after a Kähler transformation have a
contribution from eq. (37) as well as from a field de-
pendent gauge kinetic term whose presence is necessary
to cancel the mixed U(1)R × G anomalies due to the
fact that the extra U(1) has become an R-symmetry
giving an R-charge to all fermions in the theory. Using
(37), one finds:

M1/2=− g2

16π2
m3/2[(3TG − TR)−

(TG − TR)

(
(α− 1)2 + t

γ + t+ γt2

1 + γt

)]
(40)
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For U(1)Y we have TG = 0 and TR = 11, for SU(2)
we have TG = 2 and TR = 7, and for SU(3) we have
TG = 3 and TR = 6, such that for the different gaugino
masses this gives (in a self-explanatory notation):

M1 =11
g2Y
16π2

m3/2

[
1− (α− 1)2 − t(γ + t+ γt)

1 + γt

]
,

M2 =
g22

16π2
m3/2

[
1− 5(α− 1)2 − 5

t(γ + t+ γt2)

1 + γt

]
,

M3 =−3
g23

16π2
m3/2

[
1+(α− 1)2+

t(γ + t+ γt2)

1 + γt

]
(41)

6. Phenomenology

The results for the soft terms calculated in the pre-
vious section, evaluated for different values of the pa-
rameter γ are summarised in Table 1. For every γ,
the corresponding t and α are calculated by impos-
ing a vanishing cosmological constant at the minimum
of the potential. The scalar soft masses and trilinear
terms are then evaluated by eqs. (33) and the gaugino
masses by eqs. (41). Note that the relation (34) is
valid for all γ. We therefore do not list the parameter
B0.
In most phenomenological studies, B0 is substituted

for tanβ, the ratio between the two Higgs VEVs, as an
input parameter for the renormalization group equa-
tions (RGE) that determine the low energy spectrum
of the theory. Since B0 is not a free parameter in our
theory, but is fixed by eq. (34), this corresponds to
a definite value of tanβ. For more details see [22]
(and references therein). The corresponding tanβ for
a few particular choices for γ are listed in the last two
columns of table 1 for µ > 0 and µ < 0 respectively. No
solutions were found for γ <∼ 1.1, for both signs of µ.
The lighest supersymmetric particle (LSP) is given by
the lightest neutralino and sinceM1 < M2 (see table 1)
the lightest neutralino is mostly Bino-like, in contrast
with a typical mAMSB (minimal anomaly mediation
supersymmetry breaking) scenario, where the lightest
neutralino is mostly Wino-like [23].
To get a lower bound on the stop mass, the sparticle

spectrum is plotted in Figure 2 as a function of the
gravitino mass for γ = 1.1 and µ > 0 (for µ < 0
the bound is higher). The experimental limit on
the gluino mass forces m3/2 >∼ 15 TeV. In this limit
the stop mass can be as low as 2 TeV. To conclude,
the lower end mass spectrum consists of (very) light
charginos (with a lightest chargino between 250 and
800 GeV) and neutralinos, with a mostly Bino-like
neutralino as LSP (80 − 230 GeV), which would
distinguish this model from the mAMSB where the
LSP is mostly Wino-like. These upper limits on the
LSP and the lightest chargino imply that this model
could in principle be excluded in the next LHC run.

20 25 30 35 40 45
m32 HTeVL
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15
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Figure 2: The masses (in TeV) of the sbottom (yellow),
stop (black), gluino (red), lightest chargino (green) and
lightest neutralino (blue) as a function of m3/2 for γ =
1.1 and for µ > 0. No solutions to the RGE were found
when m3/2 >∼ 45 TeV. The lower bound corresponds to
a gluino mass of 1 TeV.

In order for the gluino to escape experimental bounds,
the lower limit on the gravitino mass is about 15
TeV. The gluino mass is then between 1-3 TeV. This
however forces the squark masses to be very high
(10 − 35 TeV), with the exception of the stop mass
which can be relatively light (2− 15 TeV).

7. Non-canonical Kähler potential for the
visible sector

As mentioned already in Section 4, an alternative
way to avoid tachyonic soft scalar masses for the MSSM
fields in the model (28), instead of adding the extra
Palonyi-type field z in the hidden sector, is by introduc-
ing non-canonical kinetic terms for the MSSM fields,
such as:

K=−κ−2log(s+ s̄)+κ−2b(s+ s̄)+(s+ s̄)−ν
∑

φφ̄

W =κ−3a+WMSSM ,

f(s)= 1, fA(s) = 1/g2A , (42)

where ν is an additional parameter of the theory, with
ν = 1 corresponding to the leading term in the Taylor
expansion of − log(s+ s̄−φφ̄). Since the visible sector
fields appear only in the combination φφ̄, their VEVs
vanish provided that the scalar soft masses squared
are positive. Moreover, for vanishing visible sector
VEVs, the scalar potential and is minimization remains
the same as in eqs. (refbsalpha). Therefore, the non-
canonical Kähler potential does not change the fact
that the F-term contribution to the soft scalar masses
squared is negative. On the other hand, the visible
fields enter in the D-term scalar potential through the
derivative of the Kähler potential with respect to s.
Even though this has no effect on the ground state of
the potential, the φ-dependence of the D-term scalar
potential does result in an extra contribution to the
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γ t α m0 A0 M1 M2 M3 tanβ(µ > 0) tanβ(µ < 0)

0.6 0.446 -0.175 0.475 1.791 0.017 0.026 0.027

1 0.409 -0.134 0.719 1.719 0.015 0.025 0.026

1.1 0.386 -0.120 0.772 1.701 0.015 0.024 0.026 46 29

1.4 0.390 -0.068 0.905 1.646 0.014 0.023 0.026 40 23

1.7 0.414 -0.002 0.998 1.588 0.013 0.022 0.025 36 19

Table 1: The soft terms (in terms of m3/2) for various values of γ. If a solution to the RGE exists, the value of
tanβ is shown in the last columns for µ > 0 and µ < 0 respectively.

scalar masses squared which become positive

ν > − eα(σs + 1)α

A(α)(1− α)
≈ 2.6 . (43)

The soft MSSM scalar masses and trilinear couplings
in this model are:

m2
0 = κ2a2

(
b

α

)(
eα(σs + 1) + ν

A(α)

α
(1− α)

)
A0 = m3/2(s+ s̄)ν/2 (σs + 3) (44)

B0 = m3/2(s+ s̄)ν/2 (σs + 2)

where σs is defined as in (33), eq. (31) has been used
to relate the constants a and c, and corrections due to
a small cosmological constant have been neglected. A
field redefinition due to a non-canonical kinetic term
gφφ̄ = (s + s̄)−ν is also taken into account. The main
phenomenological properties of this model are not ex-
pected to be different from the one we analyzed in sec-
tion with the parameter ν replacing γ. Gaugino masses
are still generated at one-loop level while mSUGRA
applies to the soft scalar sector. We therefore do not
repeat the phenomenological analysis for this model.
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