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ABSTRACT. We discuss the problem of singularity
crossing in isotropic and anisotropic universes. First,
we consider the so called soft or sudden singularities
and, in particular the Big Brake singularity. This
singularity was discovered in a particular tachyon
cosmological model and it was also shown that this
kind of singularity arises in a very simple model, where
matter is represented by the anti-Chaplygin gas. At
the encounter with the Big Brake singularity
the universe has a finite scale factor, a vanishing
expansion velocity and an infinite deceleration. The
Christoffel symbols also vanish the geodesics are
regular and the universe easily can cross such a
singularity. Adding to the anti-Chaplygin gas or
to the tachyon matter some amount of dust we see
that the Big Brake singularity is substituted by a
more general soft singularity, its crossing implies a
certain transformation of the properties of matter.
The crossing of the Big Bang — Big Crunch singularity
is more counter-intuitive. However, we describe it for
both Friedmann universe and Bianchi-I universe using
the field reparametrization of the variables present
in models (a scalar field and the metric). Then we
consider the Wheeler-DeWitt equation and show
that the probability for the universe to find itself at
the soft singularity is different from zero, while the
encounter with the Big Bang — Big Crunch singularity
is suppressed. We analyze the possibility to construct
Fock spaces of quantum particles at the vicinity of
different cosmological singularities and see when it
is possible and when it is not possible. Finally, we
present some attempts to develop general approach
to the connection between the field reparametrization
and the elimination of singularities.
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AHOTAIIIA. Mu 06roBoproeMo podJieMy epeTuHy
CUHTYJISIPHOCTI B  I30TPONHUX Ta  AaHI30TPOITHUX
BCeCBiTax. Crnouatky MU pO3IVISHEMO TakK 3BaHi
abo pamToBi CHHTYIAPHOCTI Ta, 30KpeMa,
cunrynsapHicts Benukoro Tanmbma. Ila cunrynspricTs
Oysia BUsBJEHA B TIEBHIM TaxiOHHINt KOCMOJIOTiUHIM
OyJI0 TaKoXK I[OKa3aHo, IO Mefl Tu

M’ 4Kl

Mozemi, i

CUHTYJIAPHOCTI BUHUKAE B JIy2Ke ITPOCTIM MOJesi, Jie
MaTepisd UpeiCTaBJieHa AHTHUYAIIUIIHCBKAM T[a30M.
IIpu 3siTkHenHi 3 cuuryngpuictio Bemukoro lagbma
BcecBit mMae ckinueHHHit MacinTabHUMT KOedIIi€eHT,
3HUKAIOYY IIBUIKICTh PO3IIUPEHHS Ta HECKIHIYEHHE
VIIOBLIbHEHHSI. CumBoimm  Kpicrobdens Takox
3HUKAIOTh, T€OJAE3UIHI € peryaapuumu, i BececBiT Moxke
JIETKO TIEPETHYTU TaKy CHUHTYJIdApHicTh.  Jlonaroum
J0 aHTUYAILUIMTIHCBKOTO ra3dy abo TaxioHHOI MaTepil
MEeBHY KILJIBbKICTH MUJIy, MU OAYUMO, 1[0 CUHTYJISIPHICTH
Bemukoro Tambma 3aMiHIOETBCH OULIBIT  3araIbHOIO
M’SIKOIO CHHTYJIPHICTIO, 1T IepeTwH nepeadavae meBHy

TpaHcdopMaIliio BIACTHBOCTEN MaTepil. IlepeTnn
cunrynsgpHocti  Bemmkoro Bubyxy —  Benukoro
Crucuennst € OiIbII KOHTPIHTYITHBHUM. OjHax,
Mu ommcyemMo 1e gk i Bceecity ®pimmana,
Tak 1 gma  BceecBity B’amki-I, BukopucToByioun
penapamMerpusaliiio  1ojsd  3MIHHUX, MPHUCYTHIX ¥y
MOJIeJIsIX (CKasIsipHe TI0Jie Ta MeTpuka). 1loTiM Mu

po3rysaaeMo piBuanas Yinepa-llesiTTa i mokazyemo,
Mo WMOBIpHiICTH TOro, 1O BcecBiT onmHUTHCH B
M'{Kill CHHTYJSIDHOCTI, BiIpi3HsieTbcs Bim  Hyod,
TOmI AK 3ycTpiu i3 cuHrymgpmicTtio  Bemmkoro
BuOyxy — Besumkoro crTucHeHHs BUKIIOYAETHCA. Mu
aHAJ3YEMO MOXKJUBICTb 1OOy/0BU MpocTopiB Poka
KBAHTOBHUX YACTUHOK IMO0JIA3Y PI3HUX KOCMOJIOTIUHUX

CHUHTYJISIPHOCTE Ta 0a4mMO, KOJHM II€ MOXKJIUBO,

a KOJIM Hi. Hapemri, mMum mpencraBiasgeMo eski
cripobu  po3poOUTH 3araJbHUM TMiAXix 10 3B a3KYy
MiXK ~ pelapaMeTpu3alli€l0 IOJisi Ta  YCyHEHHSIM
CHUHI'YJIAPHOCTEN.
Kuaro4uoBi  ciooBa: rpaBiTaris; KOCMOJIOTsT;
CHUHTYJISAPHICTb.

1. Introduction

Appearance of singularities is one of the most impor-
tant phenomena in General Relativity and in its gen-
eralizations and modifications. The singularities were
first discovered in such simple geometries as those of
Friedmann and Schwarzschild and later their general
character was established in (Penrose, 1965; Hawk-
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ing, 1966; Gorini et al., 2004). The investigation of
the oscillatory approach to the cosmological singular-
ity (Belinsky, Khalatnikov & Lifshitz, 1970) known also
as Mixmaster universe (Misner, 1969) has opened the
way to the birth of a new branches of the mathemati-
cal physics — chaotic cosmology (Khalatnikov, Lifshitz,
Khanin et al., 1985) and its relation tohyperbolic Kac-
Moody algebras (Damour, Henneaux & Nicolai, 2003).
While some researchers try to exclude cosmological
singularities and singularities hidden inside black
holes, constructing some involved models, the idea
that the singularities are not a drawback of the
General Relativity but is natural and fundamental
feature becomes more popular during new millennium.
Remarkably this idea was advocated by Misner
(Misner, 1969a) as early as in 1969. Let us give some
direct citations from his enchanting paper.
“I prefer a more optimistic viewpoint (“Nature and
Einstein are subtle but tolerant”) which views the
initial singularity in cosmological theory not as a proof
of our ignorance, but as a source from which we can
derive much valuable understanding of cosmology.”
“Thus, while I presume that relativity, like other
physical theories, will be improved from time to time,
I do not see that these changes need bear directly on
the problem of cosmological singularity.”
“We should stretch our minds, find some more ac-
ceptable set of words to describe the mathematical
situation, now identified as “singular”’, and then pro-
ceed to incorporate this singularity into our physical
thinking until observational difficulties force revision
on us.”
“The concept of a true initial singularity (as distinct
from an indescribable early era at extravagant but
finite high densities and temperatures) can be a
positive and useful element in cosmological theory.
The Universe is meaningfully infinitely old because
infinitely many things have happened since the begin-
ning.”

Inspired by this spirit of treatment of the singular-
ities as something natural, one can try to study the
opportunity to cross them. In this paper, based on my
talk at the XXV Gamov International Astronomical
Conference, I shall review different aspects of the singu-
larity crossing in gravity and cosmology. The structure
of the paper is the following: the second section is de-
voted to the description of the so called soft or sudden
singularities; in the third section we treat the more tra-
ditional Big Bang — Big Crunch singularity; the fourth
section is devoted to quantum cosmology; in the fifth
section we discuss what happens with quantum parti-
cles at the singularity crossing; in the sixth section we
describe attempts to develop a general approach to the
description of the singularity crossing; the last section
contains conclusive remarks.

2. The Big Brake cosmological singularity,
more general soft singularities and their cross-

ing

We start this section with the consideration of a very
particular toy model (Gorini, Kamenshchik, Moschella

et al., 2004). A flat Friedmann universe with the metric
ds* = dt* — a*(t)dI*

is driven by the so called tachyon field (Sen 2002) with
the Lagrange density

L=-V(T)V1-T2

The energy density is

the pressure is

p=-V(T)V1-1T2

The Friedmann equation has the following form:
2
a
H? = =5 =0
a

The equation of motion for the tachyon field is

+3HT+ﬁ:0.
1-172 |4

In our model the potential is
A
sin? [$3/A(T+K) T

V(T) =

x\/1(1+k)cos2 B A(1+k)T} ,

where k and A > 0 are the parameters of the model.
The case k > 0 is more interesting. Indeed, in this
case some trajectories (cosmological evolutions) finish
in an infinite de Sitter expansion. In other trajectories
the tachyon field transforms into a pseudotachyon field
with the Lagrange density, energy density and positive
pressure (Gorini et al., 2004):

L=W(T)VT? -1,

_ W)
-1
p=W(T)VT? - 1
W(T) =

sin [gmﬂ
\/(1+k cosz[ mT—l]
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What happens to the Universe after the transformation
of the tachyon into the pseudotachyon ? It encounters
the Big Brake cosmological singularity.

The Big Brake cosmological singularity has the fol-
lowing characteristics:

t—tpp < 00,
a(t > tpp) — app < 00,
a(t - tgp) — 0,
a(t > tpp) = —o0,
R(t > tpp) — 400,
p(t = tpp) — 0,

p(t — tBB) — +o00.

If a(tgp) # 0 it is a more general soft singularity.

At the Big Brake singularity the equations for
geodesics are regular, because the Christoffel symbols
are regular (moreover, they are equal to zero). We can
ask ourselves if it is possible to cross the Big Brake sin-
gularity (Gorini et al., 2004). Let us study the regime
of approaching to the Big Brake. On analyzing the
equations of motion we find that on approaching the
Big Brake singularity the tachyon field behaves as

A 1/3 )
T=T _ t — /3,
BBt (3W(TBB)) (tzz —1)

Its time derivative s = T behaves as

4 1/3 )
_ _ —2/3
5= (81W(TBB)> (b = 1),

the cosmological radius is

3 IW2(Tep)\ >
G =app — —aBB <(2BB)> (tgp — t)*/3,

4

its time derivative is

, 9W2(Tg)\ >
a=app <(25B)> (tBB_t)l/B,

and the Hubble variable is
OW2(Tep)\ >
H = <(2 BB)) (tpp —t)'/5.

All these expressions can be continued into the region
where t > tpp, which amounts to crossing the Big
Brake singularity. Only the expression for s is singular

at t = tpp but this singularity is integrable and not
dangerous.

Once reaching the Big Brake, it is impossible for the
system to stay there because of the infinite decelera-
tion, which eventually leads to a decrease of the scale
factor. This is because after the Big Brake crossing the
time derivative of the cosmological radius and Hubble
variable change their signs. The expansion is then fol-
lowed by a contraction, culminating in the Big Crunch
singularity.

One of the simplest cosmological models revealing a
Big Brake singularity is the model based on the anti-
Chaplygin gas with an equation of state

p= é, A>0.
p
Such an equation of state arises in the theory of wiggly
strings (Carter, 1989; Vilenkin, 1990). Here

p(a)z,/a%_A.

At a = a, = (%)1/6 the universe encounters the Big
Brake singularity.

What happens in a universe filled with an anti-
Chaplygin gas and dust (Keresztes et al., 2013; Gorini
et al., 2004)? The energy density and the pressure are

o) =\ 24t M )= A
a a B _ 4
a

Due to the dust component, the Hubble parameter has
a non-zero value at the encounter with the singularity,
therefore the dust implies further expansion. However,
with continued expansion however, the energy density
and the pressure of the anti-Chaplygin gas would be-
come ill-defined. The abrupt transition from the ex-
pansion to the contraction of the universe does not look
natural. One can try to change the equation of state of
the anti-Chaplygin gas on passing the soft singularity.
There is some analogy between the transition from an
expansion to a contraction of a universe and the per-
fectly elastic bounce of a ball from a wall in classical
mechanics. There is also an abrupt change of the direc-
tion of the velocity (momentum). However, we know
that in reality the velocity is changed continuously due
to the deformation of the ball and of the wall. The
pressure of the anti-Chaplygin gas

A

B _
ab A

p:

tends to +0o when the universe approaches the soft sin-
gularity. Requiring the expansion to continue into the
region a > ag, while changing minimally the equation
of state, we assume
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A
= for a > ag.
A= s

p:

This implies the energy density

/ B

The anti-Chaplygin gas transforms itself into Chap-
lygin gas with negative energy density. The pressure
remains positive, expansion continues. The spacetime
geometry remains continuous. The expansion stops at

a = ag, where
M B 0
ag ag

Then the contraction of the universe begins. At the
moment when the energy density of the Chaplygin gas
becomes equal to zero (again a soft singularity), the
Chaplygin gas transforms itself into the anti-Chaplygin
gas and the contraction continues culminating in an en-
counter with the Big Crunch singularity. Analogous ef-
fects arise in the model with the tachyon field and dust.
The Lagrangian of the Born-Infeld like field changes its
form.

We conclude this section by mentioning that the
soft (sudden) cosmological singularities were firstly
studied in (Barrow, Galloway & Tipler 1986). The
conditions of the singularity crossing were studied in
(Fernandez-Jambrina & Lazkoz 2004). Interesting
tachyon cosmological models were suggested in (Fein-
stein 2002) and (Padmanabhan 2002).

3. Big Bang — Big Crunch singularity crossing

The idea that the Big Bang — Big Crunch singularity
can be crossed appears very counterintuitive (Gorini et
al., 2004). Some approaches to the description of this
crossing were elaborated during the last two decades
(Bars et al., 2012; Wetterich, 2014; Dominis Prester,
2016). There is an analogy with the horizon which
arises due to a certain choice of the spacetime coor-
dinates: the singularity arises because of some choice
of the field parametrization. On choosing some conve-
nient field parametrization one can provide a matching
between the characteristics of the universe before and
after the singularity crossing. One can trace an anal-
ogy to the Kruskal coordinates for the Schwarzschild
metric. On choosing appropriate combinations of the
field variables we can describe the passage through the
Big Bang — Big Crunch singularity, but this does not
mean that the presence of such a singularity is not es-
sential. Indeed, extended objects cannot survive this
passage.

Let us consider a flat Friedmann universe filled
with a conformally coupled scalar field (Kamenshchik,
Pozdeeva, Tronconi et al., 2016).

1
S = /d4x\/—g [U(U)R - 59”1/‘77#‘7# +V(o)|,

1
U(U) = UO — EUQ.
Let us apply the conformal transformation of the met-
ric

_ Ui
glLV - Ug,ul/~

A new scalar field ¢ is

dp UL(U +3U"?) VUL (U 4 30"2)
= = qb:/—U do.

d

o vV 12U0 +o
¢=v3ilihn [«m-}

_ ¢
o = /12Uy tanh {m] .

The action then becomes the action for a minimally
coupled scalar field:

5= [ dey/G [UiRG) - 30,0, + W(0)].

URV(o(4))
W)= Tatg))

This is called the transformation from the Jordan frame
to the Einstein frame.
In a flat Friedmann universe

ds® = N2dr? — o%di?,
ds? = N%dr? — a2di>.

- U, Ju i
N = U—lN,a— Ula,t—/ Udt,

where t and t are the cosmic time parameters in the
Jordan and the Einstein frames.

a=a Ulcosh( ¢ )
V Uo V1201 )

In the vicinity of the singularity in the Einstein frame:

an~13 =0, when £ — 0.

However, in the Jordan frame one has

~1

an~t3 (N% + 5_%) — const # 0.
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Meanwhile, the scalar field o crosses the value ++/12U
and the coupling function U changes its sign. Thus,
the evolution in the Jordan frame is regular, and we
can use this fact to describe the crossing of the Big
Bang — Big Crunch singularity in the Einstein frame.
If one considers the expansion of the universe from the
Big Bang with normal gravity driven by the standard
scalar field, the continuation backward in time shows
that it was preceded by the contraction towards a Big
Crunch singularity in the antigravity regime, driven by
a phantom scalar field with a negative kinetic term.

The possibility of a change of sign of the effective
gravitational constant in the model with a conformably
coupled scalar field was analyzed in (Starobinsky, 1981;
Gorini et al., 2004). It was shown that in a homo-
geneous and isotropic universe, one can indeed cross
the point where the effective gravitational constant
changes sign. However, the presence of anisotropies
changes the situation: these anisotropies grow indef-
initely when this constant is equal to zero. To de-
scribe the Big Bang — Big Crunch singularity crossing
in anisotropic universes it is necessary to use another
methods. We have done it for the Bianchi-I universe
(Kamenshchik, Pozdeeva, Tronconi et al 2017, Kamen-
shchik, Pozdeeva, Starobinsky et al., 2018). The idea
was the following. Introducing the new “radial” vari-
able
r~a’?
and treating the scalar field as an angular variable, we
obtain an effective Lagrangian

Lo

1 .
L = §T — §T2¢2,

or, in Cartesian coordinates

1 1
L=—i?— —¢%
2" T aY
Solving the equations of motion one can describe the
singularity crossing. Introduction of the anisotropy
factors for the Bianchi-I model is reduced to the modi-
fication of the kinetic term for the massless scalar field.

4. Quantum cosmology and singularities

Speaking about quantum cosmology and singulari-
ties people mean two different approaches. One can
consider a modification of the Friedmann equation,
taking into account the quantum corrections to the ef-
fective action of the theory:

a2k

? ; = Pmatter + Pquantum corrections-
One can hope that these correction change the dynam-
ics of the universe evolution, implying an appearance of

some kind of bounce and avoing an encounter with the
singularity. Another approach is based on the study of
the Wheeler-DeWitt equation and the prospective of
vanishing of the quantum state of the universe at the
singular configurations of the geometry (DeWitt 1967):

U (geometry + matter)geometry is singular = 0.

The wave function of the Universe V¥ satisfies the
Wheeler-DeWitt equation

HY =0,

where # is the so called super-Hamiltonian. There are
two major questions, concerning this equation. It looks
like the very notion of time disappears here. Then, it
is not clear how the notion of the probability can be
determined. There is rather a vast literature devoted
to treatment of these problems (see e.g. (Barvinsky
1993)). The general recipe for their treatment can be
formulated as follows: a time can be defined as a cer-
tain function of geometrical variables. After that the
wavefunction describing matter variables satisfies an
effective Schrédinger equation. The singularity is as-
sociated with such values of the matter variables when
this singularity arises in the classical theory. Our anal-
ysis of some simple models tells that the probability
of the arising of soft singularities is not suppressed by
the wave function of the universe (Kamenshchik, Kiefer
& Sandhofer 2007, Kamenshchik and Manti 2012, Ka-
menshchik, Kiefer & Kwidzinski 2016). At the same
time the probability of Big Bang — Big Crunch singu-
larity tends to zero. The suppression of the Big Bang
— Big Crunch singularity follows from the requirement
of the normalizability of the wave function of the Uni-
verse (Barvinsky & Kamenshchik 1990). Indeed, we
require that

/ d6(6) W (6) < oo,

where ¢ is a scalar field, driving the evolution of the
universe. When |¢| — oo, the probability density UW¥
should tend to zero rapidly. If |¢| — oo corresponds
to Big Bang — Big Crunch singularity, when this
singularity is suppressed.

5. Particles, fields and singularities

We can ask ourselves what happens with particles
(in quantum field theoretical sense) when the universe
passes through the cosmological singularity (Galkina
& Kamenshchik 2020). We consider only particles con-
nected with a scalar field. The scalar field in the flat
Friedmann universe satisfies the Klein-Gordon equa-
tion:

Ad+V'(¢) =0,
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where A is the D’Alambert operator. One can consider
a spatially homogeneous solution of this equation ¢,
depending only on time ¢ as a classical background. A
small deviation from this background solution can be
represented as a sum of Fourier harmonics satisfying
linearized equations

-,

3R 1)+ 320(F.0) + o, (1)
+V" (é0(1))6 (K, () = 0.

The corresponding quantized field is

A1) = / BE@E) ulk, ) + ot (Fyu* (k, t)e~*9),

where the creation and the annihilation operators sat-
isfy the standard commutation relations:

[a(R), a* ()] = 5(F - ).
The basis functions should be normalized so that the
canonical commutation relations between the field ¢

and its canonically conjugate momentum P were sat-
isfied

[Qg(fv t)v 75(3?7 t/)} = 7'5(5 - ZJ)

1

u(k, £y (k,t) — u* (k, tya(k, t) = 0N

The linearized Klein-Gordon equation has two inde-
pendent solutions. To define a particle it is necessary
to have two independent non-singular solutions. It is
a non-trivial requirement in the situations when a sin-
gularity or other kind of irregularity of the spacetime
geometry occurs. It is convenient also to construct ex-
plicitly the vacuum state for quantum particles as a
Gaussian function of the corresponding variable. Let
us introduce an operator

F(k,t) = (2m)3(alk)u(k,t) + a* (—k)u* (k,1)).
Its canonically conjugate momentum is
Bk, 1) = a®(8)(2m)* (@(k)ik, 1) + a* (=k)i (k, 1)),
We can express the annihilation operator as

a(k) = ip(k, )u*(k, t) — ia® () f(k, t)ut (k, t).

Representing the operators f and p as

f%fa ﬁéfiéa

one can write down the equation for the corresponding
vacuum state in the following form:

(u*(Z‘ - ia?’u*f) Uo(f) =0.

Its solution is

1
Wo(f) =~

In the case of the Big Bang — Big Crunch singularity,
one of the basis functions in the vicinity of the
singularity becomes singular and it is impossible to
construct a Fock space. In the case of the Big Rip
singularity, when in finite interval of time the universe
achieves an infinite volume and infinite time derivative
of the scale factor, the Fock space can be constructed
for a spectator scalar field, but it does not exist for
the phantom scalar field driving the expansion. In the
case of the model with tachyon field, presented above,
we have considered three situations. First of them is
the non-singular transformation of the tachyon into
pseudo-tachyon. In this case both the basis functions
are regular and hence the operators of creation and
annihilation are well defined. However, at the moment
of the transformation the dispersion of the Gaussian
wave function of the vacuum becomes infinite and then
becomes finite again. In the vicinity of the Big Brake
singularity it is impossible to define a Fock vacuum.
However, if we add to the universe dust, the character
of the soft singularity is slightly changed and then the
presence of the Fock vacuum is restored.

iad(t)u* (k, t)f2>
2u*(k,t) '

6. Covariant approach to singularities

We have already told that the crossing of the Big
Bang — Big Crunch singularities looks rather coun-
terintuitive. However, it can be sometimes described
by using the reparametrization of fields, including the
metric. One can say that to do this, it is necessary to
resort to one of two ideas, or a combination thereof.
One of these ideas is to employ a reparameterization
of the field variables which makes the singular geomet-
rical invariant non-singular. Another idea is to find
such a parameterization of the fields, including, natu-
rally, the metric, that gives enough information to de-
scribe consistently the crossing of the singularity even
if some of the curvature invariants diverge. The ap-
plication of these ideas looks in a way as a craftsman
work. Our goal was to develop a general formalism to
distinguish “dangerous” and “non-dangerous” singular-
ities, considering the field variable space of the model
under consideration. In other words, we try to under-
stand when the spacetime singularities can be removed
by a reparametrization of the field variables (Casadio,
Kamenshchik & Kuntz, 2021; Casadio, Kamenshchik &
Kuntz, 2022; Kuntz, Casadio & Kamenshchik, 2022).

Our hypothesis was the following: when the geom-
etry of the space of the field variables is non-singular,
one can describe the singularity crossing. The field
space S was developed in order to treat on the same
(geometrical) footing both changes of coordinates in
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the spacetime M and field redefinitions in the func-
tional approach to quantum field theory (Vilkovisky,
1984; DeWitt, 1987).

This approach requires introducing a local metric G
in field space § and computing the associated geomet-
ric scalars by defining a covariant derivative which is
compatible with G. G is actually determined by the
kinetic part of the action and its dimension depends
on the field content of the latter. After some cum-
bersome calculations in the functional space, we have
shown that the Kretschmann scalar

K= RABCD RABCD

is finite in every theory of pure gravity

n [ n® 3n2
’C—s(4+4‘1>’

where n is the spacetime dimension. It can be inter-
preted as a statement that all the singularities in empty
universe can be crossed.

We have considered also another hypothesis con-
nected to quantum effective action and to the homo-
topy group. Let us introduce the functional

Plp] = e T,

where I'[p] is the effective action. We shall call ¢)[¢] the
functional order parameter because v plays the analo-
gous role to the order parameter in the theory of phase
transitions in ordered media or cosmology.

The field space M can be thought of as the ordered
medium itself, whereas functional singularities corre-
spond to topological defects.

The functional order parameter 1 defines the map

P M— St

from the field space to the unit circle, the latter
playing the role of the order parameter space. The
singularities can be characterized by the fundamental
group (first homotopy group). If this group is trivial
the singularity can be removed. We have checked on
the example of some simple systems with removable
singularity that the corresponding homotopy group is
indeed trivial.

7. Conclusions

In this paper we have tried to present some ar-
guments and results telling that the appearance
of the singularities in the cosmological and other
gravitational systems is not drawback of models or
theories but is instead their distinguishing feature.
Thus, to our mind rather than avoid singularities, it
is better to study how their presence influences the
non-singular quantities (just like in quantum field

theory). Further details and references can be found in
the review papers (Gorini et al., 2004; Kamenshchik,
2013; Kamenshchik, 2018; Kamenshchik, 2024).
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