THE RELATIONSHIP OF THE INTENSITY OF THE SCR PROTON FLUX WITH THE PARAMETERS OF TYPE II SOLAR RADIO BURSTS

E.A.Isaeva
Institute of Radio astronomy of NAS of Ukraine, <isaevaode@gmail.com>

ABSTRACT. 112 solar proton events (SPEs) were processed for the period from November 24, 2000 to December 20, 2014, which were accompanied by type II radio bursts. For the analysis, used original records of solar radio emission from a solar radio spectrograph in the range of 25-180 MHz, as well as original records of the flux intensity proton of solar cosmic rays (SCR) protons I_{p} with energy E_{p} in the range > 0.8-850 MeV according to data from the GOES series of devices. In this case, superimposed proton events were always separated and identified with the corresponding solar proton flares, and the maximum proton flux intensity I_{p} of superimposed proton events was determined from the level of the previous proton event.

Based on data from the solar radio spectrograph, regression models were obtained for 91 type II bursts that established the relationship between the frequency drift velocity V_{f} and the frequency of type II bursts $f_{i,j}$, and for 73 type II bursts it was possible to obtain regression models which established the relationship between the intensity of type II bursts $I_{i,j}$ and type II burst frequency $f_{i,j}$ in the range 25-180 MHz. Detailed studies have shown that the intensity of type II bursts $I_{i,j}$, as well as the frequency drift velocity V_{f}, strongly depends on the frequency of type II burst $f_{i,j}$ and monotonically changes with time t_{i} along the harmonics of type II bursts.

As a result, the relationship between the maximum values of the SCR proton flux intensity I_{p} and the calculated values of the frequency drift velocity $V_{i,j}$ and intensity of type II bursts $I_{i,j}$ was investigated. A comparative analysis showed that the relationship between the intensity of the SCR proton flux I_{p} and the intensity of type II bursts $I_{i,j}$ is much stronger than with the frequency drift velocity $V_{i,j}$, where the correlation coefficient r is 0.82 and 0.71, respectively, for protons with energies $E_{p} > 30$ MeV. The relationship between the proton flux intensity I_{p} and the frequency drift velocity $V_{i,j}$ and the intensity of type II bursts $I_{i,j}$ was also studied as a function of the proton energy E_{p}, and the frequency $f_{i,j}$ of type II radio bursts. It was shown that the strongest relationship between the intensity of the SCR proton flux I_{p} with the frequency drift velocity $V_{i,j}$ and with the intensity of type II bursts $I_{i,j}$ is observed with subrelativistic SCR protons with energies E_{p} in the range > 30-100 MeV and for type II radio bursts at a frequency $f_{i,j}$ in the range 40-160 MHz.

Keywords: Proton events, proton flux intensity, frequency drift velocity, type II burst intensity.

На основі даних з сонячного радіоспектрографа для 91 сплеску II типу були отримані регресійні моделі, що встановлюють зв’язок між швидкістю частотного дрейфу $V_{i,j}$ і частотою сплесків II типу $f_{i,j}$, а також для 73 сплесків II типу вдалося отримати регресійні моделі, що встановлюють зв’язок між інтенсивністю сплесків II типу $I_{i,j}$ і частотою сплесків II типу $f_{i,j}$ у діапазоні 25-180 МГц. Детальні дослідження показали, що інтенсивність сплесків II типу $I_{i,j}$ як і швидкість частотного дрейфу $V_{i,j}$ сильно залежать від частоти сплесків II типу $f_{i,j}$ і монотонно змінюються з часом t_{i} відомо гармонік сплесків II типу.

В результаті було досліджено зв’язок максимальної значень інтенсивності потоку протонів СКП I_{p} з розрахунковими значеннями швидкості частотного дрейфу $V_{i,j}$ та інтенсивності сплесків II типу $I_{i,j}$. Порівняльний аналіз показав, що зв’язок інтенсивності потоку протонів СКП I_{p} з інтенсивністю сплесків II типу $I_{i,j}$ значно сильніший, ніж зі швидкістю частотного дрейфу $V_{i,j}$ де коефіцієнт кореляції r дорівнює 0.82 і 0.71, відповідно для протонів з енергією $E_{p} > 30$ МеВ. Також було досліджено зв’язок інтенсивності потоку протонів I_{p} з інтенсивністю сплесків II типу $I_{i,j}$ залежно від енергії протонів E_{p} та від частоти $f_{i,j}$ радіоспектрографів II типу. Було показано, що найбільш сильний зв’язок інтенсивності потоку протонів СКП I_{p} з інтенсивністю сплесків II типу $I_{i,j}$ для частоти $f_{i,j}$ в діапазоні 40-160 МГц.

Ключові слова: протонні події, інтенсивність потоку протонів, швидкість частотного дрейфу, інтенсивність сплесків II типу.
1. Introduction

It is currently believed that solar cosmic rays (SCRs) can be accelerated either in the region of flare energy release or at shock wave fronts, which can be generated by both flares and coronal mass ejections (CMEs) (Reames, 1999). The results obtained to date do not allow us to draw an unambiguous conclusion about which acceleration process is dominant.

The presence of a strong connection between the flux of SCR protons and the parameters of microwave radio bursts (Akinyan et al., 1977, 1978; Chertok, 1982; Chertok et al., 1987; Melnikov, Epifanov, 1979; Melnikov et al., 1986, 1991; Isaeva, 2010, 2018, 2020) definitely indicates the acceleration of SCR protons in the flare region. However, there are many indications that shock waves also play an important role in the acceleration of solar cosmic rays (Gopalswamy et al., 2002; Cliver et al., 2004).

Previously, in works (Tsap & Isaeva, 2011, 2012, 2013), some questions regarding the connection between the flux of SCR protons and the parameters of type II radio bursts were considered. In the course of studies of the relationship between the frequency drift velocity of meter-decameter type II bursts and the intensity of the proton flux \(I_p \) of SCRs of different energies, two types of events were discovered, which, according to Tsap (Isaeva and Tsap, 2011), suggests the generation of shock waves both in the region of flare energy release and a moving coronal mass ejection (CME). The works (Isaeva & Tsap, 2011; Tsap and Isaeva, 2012, 2013) present the results of a study of the efficiency of SCR acceleration by coronal and interplanetary shock waves, and also provide arguments in favor of a model of a two-stage proton acceleration process (Wild et al., 1963; Tsap & Isaeva, 2012). A comparative analysis showed that the acceleration of protons by coronal shocks is more effective than by interplanetary shocks, and that the main acceleration of protons occurs in the flare region and additionally at the shock wave fronts (Tsap & Isaeva, 2012).

A study of the fine spectral structure of meter-decameter radio bursts of type II showed that there is a fairly strong connection between the intensity of the proton flux \(I_p \) and the relative distance \(b_i \) between harmonics of type II bursts at a given time \(t_i \), where the correlation coefficient \(r \) between the studied values is \(\approx 0.70 \), while the relationship between the frequency drift velocity \(V_i \) and the proton flux intensity \(I_p \) turned out to be weak, where the correlation coefficient \(r \) between \(I_p \) and \(V_i \) does not exceed \(\approx 0.40 \) (Tsap & Isaeva, 2013).

However, further studies of the fine spectral structure of meter-decameter radio bursts of type II in the range 25-180 MHz showed that if instead of the frequency drift velocity \(V_i \) we use the parameter \(V_0 = (f_2 - f_1)/(t_i - t_0) \), which to some extent characterizes the speed of displacement of the shock wave front over time \(t_0 \), where \(f_1 \) and \(f_2 \) are the frequencies at the 1-st and 2-nd harmonics of type II bursts at a given time \(t_i \), the correlation coefficient \(r \) between the studied parameters is \(\approx 0.79 \) (Isaeva, 2018), which is quite comparable with what is obtained from the parameters of microwave bursts (Melnikov et al., 1991; Isaeva, 2018). It should also be noted that a strong relationship between the proton flux intensity \(I_p \) and parameter \(V_0 \) is observed in a narrow frequency range of 25-60 MHz. Moreover, as a result of detailed studies of the fine structure of type II radio bursts, a number of features were discovered. It has been shown that the relative distance \(b_i \) between harmonics of type II radio bursts varies monotonically over time (Isaeva, 2019; Tsap, Isaeva, Kopylova, 2020). All 112 type II radio bursts are characterized by a monotonic decrease in the relative distance \(b_i \) between harmonics to a minimum value \(b_{min,i} \) with a subsequent increase (Isaeva, 2019, 2020.). A strong relationship was also found between the intensity of the proton flux \(I_p \) and the frequency \(f_{min,i} \) at the 1-st harmonic at the time of the minimum relative distance between the harmonics of a type II burst (Isaeva, 2018, 2019, 2020). Recent studies have also been related to the study of the fine structure of type II radio bursts in the range 25-180 MHz. As a result of these studies, a strong relationship was discovered between the proton flux intensity \(I_p \) and the frequency drift velocity \(V_i \) and the intensity of type II bursts \(I_{II} \) at the 2-nd harmonic of type II radio bursts.

2. Initial data

For the analysis, we used original recordings of the dynamic spectra of solar radio emission in the range of 25-180 MHz according to data from the Solar Radio Spectrograph (SRS) (http://www.ngdc.noaa.gov/stp-space-weather/solar-data/solar-features/solar-radio/rstn-spectral/), as well as original records of the proton flux intensity \(I_p \) of solar cosmic rays (SCR) with energy \(E_p \) in the range > 0.8-850 MeV according to data from the GOES series of devices (https://satdat.ngdc.noaa.gov/sem/goes/data/new_avg/).

3. Processing solar proton events

We processed 112 proton events associated with type II radio bursts for the period from November 24, 2000 to December 20, 2014. For the analysis, the maximum values of the proton flux intensity \(I_p \) with energy \(E_p > 0.8-850 \) MeV were used. Superimposed proton events were separated and identified with corresponding solar flares according to protonity criteria. Then, in each channel, the maximum intensity of the proton flux \(I_p \) from the pre-flare level was determined. For superimposed proton events, the proton flux intensity \(I_p \) was determined from the level of the previous proton event. Fig. 1 shows an example of the processing of overlaid proton events in April 2001.

Figure 1: Example of processing superimposed proton events in April 2001
4. Processing of type II solar radio bursts in the range of 25-180 MHz

4.1. Determination of the frequency drift velocity \(V_{i,j} \) of type II radio bursts

Harmonics of type II bursts were approximated using linear regression model (1)

\[
\log f_{i,j} = k_1 j \cdot \sqrt{t_i} + k_2 j ,
\]

where \(f_{i,j} \) is the frequency at time \(t_i \), \(k_1 j \) and \(k_2 j \) are linear regression coefficients, \(i = 1 \ldots n \) – sample number, \(j = 1, 2 \) – harmonic number. Start timing for all events corresponded to the beginning of the first harmonic at 180 MHz. This model (1) gives a fairly good approximation for all 112 type II radio bursts (Isaeva, Tsap; 2017), which made it possible to study the dynamics of the parameters of type II radio bursts over time \(t_i \). Therefore, having previously determined the coefficients \(k_1 j \) and \(k_2 j \) in the regression model (1), and then differentiated expression (1) by time \(t_i \), it is possible to determine the instantaneous values of the frequency drift velocity \(V_{i,j} (2) \) of type II bursts in any time \(t_i \) in the range 25-180 MHz (Tsap, Isaeva, Kopylova; 2023).

\[
V_{i,j} = \frac{\ln 10 \cdot f_{i,j}}{2 \cdot \sqrt{t_i}} = \frac{(k_1 j \ln 10)^2}{2} \cdot \frac{f_{i,j}}{\ln f_{i,j} - k_2 j \ln 10} .
\]

4.2. Determination of the intensity of type II radio bursts \(I_{i,j} \) in the range 25-180 MHz

Based on the original data from SRS, a dynamic spectrum was built on the computer screen, where all processing took place. Using two different linear regressions, which differed only in the values of the linear regression coefficients of type (1), the width of the 2-nd harmonic was limited, as shown in Fig. 2. When the harmonics of type II radio bursts were visible on the background of powerful continuum radiation of type IV, then the procedure was type IV burst filtering.

![Figure 2: An example of identifying the width of the 2-nd harmonic of type II radio bursts](image)

Figure 2: An example of identifying the width of the 2-nd harmonic of type II radio bursts

4.3. Relationship between frequency \(f_{i,j} \) and intensity of type II radio bursts \(I_{i,j} \) in the range 25-180 MHz

In order to understand how the intensity of type II bursts \(I_{i,j} \) is related to the frequency \(f_{i,j} \), a procedure was performed to average the intensity maxima of type II bursts \(I_{i,j} \) at a given frequency \(f_{i,j} \) for 73 bursts. The results of this procedure are shown in Fig. 4 a) and b) at the 1-st and 2-nd harmonics, respectively. In Fig. 4 a) and b) it is clear that when the harmonics of type II bursts go beyond the powerful continuum burst of type IV in the frequency range 25-50 MHz, then a clear relationship is visible between \(I_{i,j} \) and \(f_{i,j} \). In this regard, filtering of the continuum radiation of type IV bursts was performed.

![Figure 3: The observed intensity \(I_{i,2} \) of a type II burst at the 2-nd harmonic is shown in red, and the calculated intensity in black.](image)

Figure 3: The observed intensity \(I_{i,2} \) of a type II burst at the 2-nd harmonic is shown in red, and the calculated intensity in black.

Then, on the time interval \(\Delta t \) at a given frequency \(f_{i,2} \) at the 2-nd harmonic, the maximum intensity values of the type II burst \(I_{i,2} \) were determined. In Fig. 3 shows in red the observed values of the maximum intensity \(I_{i,2} \) at a given frequency \(f_{i,2} \) with filtering of type IV continuum radiation, and in black the calculated values of the intensity \(I_{i,2} \) of a type II radio burst. As a result of this procedure, only 73 dynamic spectra out of 112 were processed, since against the background of a powerful continuum type IV burst it was not always possible to distinguish the width harmonic of a type II burst.

![Figure 4: Averaged intensity values of type II bursts \(I_{i,j} \) at a given frequency \(f_{i,j} \) for 73 type II bursts at the 1-st (a) and 2-nd (b) harmonics, respectively](image)

Figure 4: Averaged intensity values of type II bursts \(I_{i,j} \) at a given frequency \(f_{i,j} \) for 73 type II bursts at the 1-st (a) and 2-nd (b) harmonics, respectively
In Fig. 5 a) and b) shows the dependence of the average intensity values of type II bursts $I_{i,j}$ after filtering the continuum radiation of type IV bursts on the frequency of type II bursts $f_{i,j}$.

In Fig. 5 a) and b) it is clear that the intensity of type II bursts $I_{i,j}$ strongly depends on the frequency of type II radio burst $f_{i,j}$, where the dependence of the intensity $I_{i,j}$ on the frequency $f_{i,j}$ can be quite accurately approximated by equation (3), where k_1 and k_2 – linear regression coefficients (3).

$$\log I_{i,j} = k_1 \cdot \log f_{i,j} + k_2$$

(3)

4.4. Elimination of a gain jump when processing dynamic spectra, as well as filtering type IV continuum radiation

Fig. 6 a) shows an example of a sharp change in gain at the boundary of two frequency bands 25-75 and 75-180 MHz for the proton event of 04.18.2001, accompanied by a powerful type IV burst, as well as a type II burst according to data from LEAR (SRS), and Fig. 6 b) shows the procedure for bringing the gain in both bands to the same gain value, as well as filtering outliers, type IV continuum emission and zero values in the spectrum for the 2-nd harmonic of a type II burst.

5. Relationship between the intensity of the SCR proton flux I_p and the drift velocity $V_{i,2}$ and the intensity of type II bursts $I_{i,2}$ at the 2-nd harmonic in the range 25-180 MHz

A comparative analysis has shown that there is a fairly strong connection between the intensity of the SCR proton flux I_p and the frequency drift velocity $V_{i,2}$. In Fig. 7 a) shows a scatter diagram between the frequency drift velocity $V_{i,2}$ at a frequency $f_{i,2} = 70$ MHz and the proton flux intensity I_p with energy $E_p > 30$ MeV for 91 proton events, where the correlation coefficient r between the studied parameters is ≈ 0.71. The black line in Fig. 7 a) shows the calculated values of the proton flux intensity $I_{p,c}$, calculated...
using the regression model (4), which establishes a connection between the frequency drift velocity \(V_{i,2}\) and the observed values of the proton flux intensity \(I_p\) with energy \(E_p > 30\) MeV.

\[
\lg I_p = \lg I_{p,c} = 3.4 \cdot \lg V_{i,2} + 3.7
\]

(4)

As a result of detailed studies of the relationship between the SCR proton flux and various parameters of type II radio bursts, a strong relationship was discovered between the intensity of the proton flux \(I_p\) and the intensity of type II bursts \(I_{i,2}\). Moreover, the connection between \(I_p\) and \(I_{i,2}\) is much stronger than with the frequency drift velocity \(V_{i,2}\). In Fig. 7 b) a scatter diagram between the intensity of the proton flux with \(E_p > 30\) MeV and the intensity of type II bursts \(I_{i,2}\) at a frequency \(f_{i,2} = 90\) MHz for 55 proton events, where the correlation coefficient \(r\) between \(I_p\) and \(I_{i,2}\) is approximately 0.82. The black line in Fig. 7 b) shows the calculated values of the proton flux intensity \(I_{p,c}\) calculated using the regression model (5), establishing a relationship between the intensity of type II bursts \(I_{i,2}\) and the observed values of the proton flux intensity \(I_p\) with energy \(E_p > 30\) MeV.

\[
\lg I_p = \lg I_{p,c} = 0.031 \cdot I_{i,2} - 1.196
\]

(5)

It should be noted that when studying the connection between \(I_p\) and \(I_{i,2}\), the heliolongitudinal attenuation of the proton flux was not taken into account, since taking into account the heliolongitudinal attenuation coefficient leads to a decrease in the correlation between \(I_p\) and \(I_{i,2}\), while taking into account the heliolongitudinal attenuation between \(I_p\) and \(V_{i,2}\) leads to an increase in the correlation. It was not possible to establish the reason for the decrease in the correlation between the proton flux \(I_p\) and the intensity of type II burst \(I_{i,2}\) taking into account the heliolongitudinal attenuation coefficient of the proton flux.

The relationship between the intensity of the SCR proton flux \(I_p\) and the frequency drift velocity \(V_{i,2}\) and the intensity of type II bursts \(I_{i,2}\) was also studied depending on the proton energy \(E_p\) in the range \(>1-850\) MeV and on the frequency of type II radio bursts \(f_{i,2}\) in the range 25-180 MHz. A comparative analysis showed that the relationship between the SCR proton flux \(I_p\) and the frequency drift velocity \(V_{i,2}\) and the intensity of type II bursts \(I_{i,2}\) largely depends on the proton energy \(E_p\) (Fig. 8 a). In Fig. 8 a) red color indicates the dependence of the correlation coefficients \(r\) between \(I_p\) and \(V_{i,2}\), and blue color between \(I_p\) and \(I_{i,2}\). In Fig. 8 a) it is clear that the strongest connection between \(I_p\) and \(V_{i,2}\) and \(I_{i,2}\) is observed for subrelativistic protons with \(E_p > 30-100\) MeV and sharply decreases for protons with energy \(E_p > 850\) MeV.

If we consider the relationship between the intensity of the proton flux \(I_p\) with \(V_{i,2}\) and \(I_{i,2}\) from the frequency of the type II radio burst \(f_{i,2}\) in the range 25-180 MHz, then as can be seen in Fig. 8 b) the connection \(I_p\) with \(V_{i,2}\) and \(I_{i,2}\) remains almost constant. The sharp drop at low frequencies \(f_{i,2} < 30\) MHz is due to the fact that at the edges of the spectrum it is not possible to accurately determine the behavior of the regression model (6), which was obtained from data in the range 25-180 MHz. In order to obtain a more accurate model (6), data is needed at frequencies <25 MHz and >180 MHz. Thin lines in Fig. 8 a) and b) show the dependences of the correlation coefficients without taking into account the heliolongitudinal attenuation of the SCR proton flux.

6. Conclusion

The results obtained related to the study of the relationship between the intensity of the flux of SCR protons and the frequency drift velocity and intensity of type II bursts definitely indicate the important role of coronal shock waves in the acceleration of subrelativistic SCR protons. However, a sharp decrease in the relationship between the intensity of the flux of SCR protons \(I_p\) with energy \(E_p > 850\) MeV with the frequency drift velocity \(V_{i,2}\) and the intensity of type II bursts \(I_{i,2}\) indicates that high-energy SCR protons with energy \(E_p > 850\) MeV are probably accelerated in the flare region in current layers.

![Figure 8](image_url)

Figure 8: a) Relationship between the intensity of the proton flux \(I_p\) and the frequency drift velocity \(V_{i,2}\) (red) and the intensity of type II bursts \(I_{i,2}\) (blue) from the proton energy \(E_p\). b) Relationship between the proton flux intensity \(I_p\) and the frequency drift velocity \(V_{i,2}\) (red) and with the intensity of type II bursts \(I_{i,2}\) (blue) from the type II radio burst frequency \(f_{i,2}\). Thin lines show the values of the correlation coefficients without taking into account the heliolongitudinal weakening of the SCR proton flux.
References

Akin’yan S., Fomichev V., Chertok I.: 1977, Geomagnetizm i Aeronomiya, 17, № 1, 10.
Tsap Yu., Isaeva E., Kopylova Yu.: 2023, Geomagnetism and Aeronomy.