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ABSTRACT. Resonance spectra (Hagedorn distri-
bution) are critically revised with emphasis on the
saturation of hadron states and possible transition to
a soup of quarks and gluons. Previous studies in this
direction are extended by use of non-linear, complex
Regge trajectories whose limited real part supports
the idea of saturation of high-mass/spin resonance
production.
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АННОТАЦIЯ. В роботi проведено аналiз адрон-
них спектрiв (розподiл Хагедорна) з акцентом на
можливiсть насичення адронних станiв та перехо-
дом їх до “варева” (супу) з кваркiв та глюонiв.
Основнi результати даної роботи такi:

1) дослiджено спектр мезонiв та барiонiв в областi
великих мас;

2) з’ясована роль критичної температури в стати-
стичнiй моделi Хагедорна;

3) проаналiзованi наслiдки конечностi спектра
Хагедорна;

4) дана статистична iнтерпретацiя фазового пере-
ходу вiд адронiв до кваркiв та глюонiв в термiнах
рiвняння стану. Унiкальною рисою отриманого рiв-
няння стану є наявнiсть в ньому вiд’ємної темпера-
тури та переохолодження речовини.

В бiльшостi вiдомих теорiй та моделей трає-
кторiї Редже є лiнiйнi та реальнi функцiї, що не
допускає застосування їх для реальних резонансiв.
Результати попереднiх аналiзiв в цьому напрямку
нами розширено завдяки застосуванню нелiнiйних
комплексних траєкторiй Редже, в яких зростання
реальної частини є обмежений, що пiдтверджує на-
сичення процесу народження резонансiв з великими
масами. Приведенi конкретнi моделi таких трає-
кторiй, а саме: траєкторiї з кореневими порогами
та такi, що слiдують з дисперсiйних спiввiдношень.
Параметри приведених моделей траєкторiй Редже
верифiковано за допомогою порiвняння з експе-
риментальними даними про мезоннi та барiоннi

резонанси. В цiлому, робота є внеском в дослi-
дження одної з важливих та загадкових проблем
фiзики високих енергiй – конфайнменту кваркiв
та глюонiв на прикладi переходу важких адронних
резонансiв в новий агрегатний стан речовини,
можливо – кварк-глюонну плазму, властивостi якої
ще до кiнця не з’ясовано.
Ключовi слова: Адрони, резонанси, спектр Хаге-
дорна, траєкторiї Редже, кварки, глюони.

1. Introduction

The spectrum of hadron resonances is among the
central problems of high-energy physics since the
properties of highly excited resonances are intimately
connected with the problem of confinement.The idea
of the resonance gas was suggested by Belenky and
Landau, who used the Bethe-Uhlenbeck method for
non-ideal gases. The field was revitalized in a series
of papers by Rolf Hagedorn (Hagedorn), and followers
who introduced the notion of limited temperature, that
later received various modifications and interpretati-
ons . In a recent paper (Szanyi, 2023) we extended
Hagedorn’s approach by combining statistical physi-
cs with the analytic S−matrix theory, realized by the
Regge-pole model.

Here we the spectrum of hadronic resonances by
relating seemingly two different approaches: statistical
- that of Hagedorn and Regge.

The density of hadron states follows the law

ρ(m) = f(m) exp(m/TH), (1)

where f(m) is a slowly varying function of mass and TH
is the Hagedorn temperature, originally considered as
the limiting temperature but later re-interpreted as the
temperature of the color deconfinement phase transi-
tion where hadrons "boil"transforming matter into a
boiling quark-gluon soup.

Over 50 years after the publication of R. Hagedorn’s
paper (Hagedorn) on the spectrum of resonances
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many important details still remain open. In spite of
many efforts, the calculated value of the Hagedorn
temperature shows a surprisingly widespread from
TH = 141 MeV to TH = 340 MeV, depending on the
parametrization and the set of data (baryons, mesons)
used. The discrepancies may have different origin, in
particular: a) the large uncertainties in the specification
and identification of heavy resonances, b) the analyti-
cal form of the Hagedorn spectrum, in particular,
the form of the function f(m) multiplying Hagedorn’s
exponential. In the present paper, we address both
issues.

Our approach here is limited to the world of observed
resonances, summarized by the Particle Data Group
and theoretical methods based on analyticity, unitarity,
and duality.

Crucial in our paper is the identification of the
function f(m) with the derivative of the relevant
Regge trajectory. In the spirit of the analytic S-matrix
approach, Regge trajectories encode an essential part
of the strong interaction dynamics, they are building
blocks of the theory. There were many attempts to
find analytic forms of the non-linear complex Regge
trajectories, based on mechanical analogues (strings),
quantum chromodynamics etc. Below we rely on duali-
ty and constraints based on analyticity and unitarity,
constraining the threshold and asymptotic behaviour of
the trajectories. An important constraint, affecting the
spectrum near its critical point is the upper bound on
the real part of Regge trajectories’, coming from dual
models with Mandelstam analyticity. Construction of
explicit models of the trajectories satisfying the above
constraints is a non-trivial problem. In the present
paper, we propose explicit models of such trajectori-
es allowing explicit calculations and compatible with
the data on resonances.

Below we argue that while Hagedorn’s exponential
rise comes mainly from the proliferation of spin and
isospin degeneracy of states with increasing mass, that
can be counted directly, the prefactor f(m) reflects
dynamics, encoded in Regge trajectories given that
f(m) = α′(m), where α′(m) is the slope of the
trajectory.

The low-mass, m < 1.8 GeV spectra do not exhi-
bit any surprise by following Hagedorn’s exponenti-
al. The only open questions are the value of the
Hagedorn temperature TH and possible differences
between the spectra for various particles. The spectra
beyond m = 1.8 GeV are different: on the experimental
side, the high-mass resonances tend to gradually di-
sappear, their status becoming uncertain.

The most important issue is the existence of a
“melting point"where the resonances are transformed
to a continuum of a boiling soup of quarks and
gluons. This critical region/point is studied by various
methods: statistics and thermodynamics, quantum.

2. Melting hadrons

In this Section we study the relation between the
mass density of hadronic states given by the Hagedorn
spectrum and the dynamics emerging from Regge pole
models, inspecting non-linear Regge trajectories.

In spite of the huge number of papers, the subject
remains a topical problem of hadron dynamics with
numerous open questions. We address the following
issues:

• the behavior of the meson mass spectrum in the
high-mass region;

• the role of the critical temperature and the
prefactor in ρ(m) in the Hagedorn model of
hadronic spectra;

• the finiteness of the Hagedorn spectrum and its
consequences.

The expression for pressure in this thermodynamic
approach in the Boltzmann approximation is given by:

p =
∑
i

gip(mi) =

M2∫
M1

dmρ(m) p(m), (2)

with

p(m) =
T 2m2

2π2
K2

(m
T

)
, (3)

where M1 and M2 are the masses of the lightest and
heaviest hadrons, respectively, and gi-s are particle
degenerations.

For fixed isospin and hypercharge a cubic density of
states, ρ(m) ∼ m3, fits the data. Moreover, the cubic
spectrum can be related to collinear Regge trajectori-
es. Indeed, following the arguments of Burakovsky
and Horowitz (Burakovsky & Horowitz) , on a linear
trajectory with negative intercept, α(t) = α′t − 1,
some integer values of α(t) = J correspond to states
with negative spin, J = α(tJ), with squared masses
m2(J) = tJ . Since a spin-J state has multiplicity 2J+1,
the total number of states with spin 0 ≤ J ≤ j at
t = m(j)2 is given by

N(j) =

j∑
J=0

(2J + 1) = (j + 1)2 = α′2m4(j). (4)

Hence the density of states per unit mass interval is
obtained as the derivative of this cumulative quantity,

ρ(m) =
dN(m)

dm
= 4α′2m3, (5)

and it grows as the cubic power of the mass.
Consequently for a finite number of collinear trajectori-
es, N , the corresponding mass spectrum is given as

ρ(m) = 4Nα′2m3. (6)



A different view on the spectra was advocated
by E. Shuryak (Shuryak), who suggested to use a
quadratic parametrization, completely different from
the conventional form:

ρ(m) ∼ m2.

In both the statistical bootstrap model and in the
dual resonance model, the resonance spectrum takes
the form of Eq. (1). In the dual resonance model
f(m) ∼ d

dm<α(m2). We use non-linear complex Regge
trajectories to determine this pre-factor as discussed in
the next subsections.

The meson and baryon spectra differ, in particular
by their slopes. More important is the question of
the asymptotic behaviour of ρ(m) for large masses. In
theory, Hagedorn’s exponential may rise indefinitely,
however, starting fromm ≈ 2.5 GeV resonances are not
observed. The question arises whether it is a "techni-
cal"issue (the resonances gradually fade becoming
too wide to be detected) or there is a critical poi-
nt where they melt to a continuum transforming the
hadron matter to a "boiling soup". This point can
be illuminated by means of Regge trajectories, as we
demonstrate it in what follows.

We concentrate on the meson spectrum, more speci-
fically that of ρ and its excitations. This familiar
trajectory is chosen just as a representative example.
Other trajectories, including baryonic ones as well as
those with heavy (c and b) flavors will be studied later.
We are interested in the high-mass behavior, starting
from m ≈ 1.8 GeV. Beyond this value the exponenti-
al behavior of the Hagedorn spectrum is expected to
change drastically. We concentrate on its behaviour
above 1.8 GeV.

Note that rather than comparing the density of
states ρ(m) to the data it is customary to accumulate
states of masses lower than m,

Nexp =
∑
i

giΘ(m−mi), (7)

where gi is the degeneracy of the i-th state with mass
mi in spin J and isotopical spin I, i.e.,

gi =

{ (2Ji + 1)(2Ii + 1), for non-strange mesons
4(2Ji + 1), for strange mesons
2(2Ji + 1)(2Ii + 1), for baryons

The theoretical equivalent of Eq. (7) is

Ntheor(m) =

∫ m

mπ

ρ(m′)dm′, (8)

where the lower integration limit is given by the
mass of the pion. We identify f(m) in ρ(m) with
the slope of the relevant non-linear complex Regge
trajectory α′(m). In the next subsection we discuss
the properties of these trajectories following from the

analytic S−matrix theory and duality, and present an
explicit example of such a trajectory.

3. Regge trajectories

At low and intermediate masses, light hadrons fit
linear Regge trajectories with a universal slope, α′ ≈
0.85 GeV2. As masses increase, the spectrum changes:
resonances tend to disappear. The origin and details of
this change are disputable.

Termination of resonances, associated with a "ioni-
zation point"was also studied in a different class of dual
models, based on logarithmic trajectories [?].

Possible links between the Hagedorn spectra and
Regge trajectories appear in the statistical bootstrap
and dual models, according to which the pre-factor
f(m) in Eq. (1) depends on the slope of the relevant
Regge trajectory, α′(m2), which is constant for linear
Regge trajectories.

We extend the Hagedorn model by introducing the
slope of relevant non-linear Regge trajectories. Anti-
cipating a detailed quantitative analysis, one may
observe immediately that a flattening of <α(s = m2)
1, results in a decrease of the relevant slope α′(m)
and a corresponding change in the Hagedorn spectrum.
Following Eq. (1) we parametrize

ρ(m) =

(
d

dm
<α(m2)

)
× exp(m/TH). (9)

Based on the decreasing factor <α′ in Eq. (9) the
exponential rise of the density of states slows down
near to the melting point around m ≈ 2 − 2.5 GeV.
The cumulative spectrum Eqs. (7) and (8), accordingly
tends to a constant value.

Any Regge trajectory should satisfy the followings:

• threshold behavior imposed by unitarity;

• asymptotic constraints: the rise of real part
of Regge trajectories is limited, <α(s) ≤
γ
√
t ln t, s→∞;

• compatibility with the nearly linear behavior in
the resonance region (Chew-Frautschi plot).

The threshold behavior of Regge trajectories is
constrained by unitarity. t-channel unitarity constrains
the Regge trajectories near the threshold, t→ t0 to the
form

=α(t) ∼ (t− t0)<α(t0)+1/2. (10)

Here t0 is the lightest threshold, e.g. 4m2
π for the meson

trajectories. Since <α(4m2
π) is small, a square-root

threshold is a reasonable approximation to the above
constraint.

1We use the (here positive) variables s or t interchangeably
with crossing-symmetry in mind.
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In the resonance region below flattening near m =√
s < 2.5 MeV the meson and baryon trajectories are

nearly linear (Chew-Frautschi plot). Fixed-angle scali-
ng behavior of the amplitude constrains the trajectories
even more, down to a logarithmic behavior.

There are several reasons why the non-linear
and complex nature of the Regge trajectories is
often ignored, namely: 1) the observed spectrum
of meson and baryon resonances (Chew-Frautschi
plot) seem to confirm their linearity; 2) in the
scattering region, t < 0, the differential cross-section,
dσ/dt ∼ exp((2α(t) − 2) ln s) is nearly exponential
in t; 3) Dual models, e.g. the Veneziano amplitude
are valid only in the narrow-width approximation,
corresponding to linear Regge trajectories (hadronic
strings). Deviation from linearity is unavoidable, but
its practical realization is not easy.

4. Models of Regge trajectories

Unitarity imposes a severe constraint on the
threshold behaviour of the trajectories:

=mα(t)t→t0 ∼ (t− t0)<eα(t0)+1/2, (11)

while asymptotically the trajectories are constrained
by dual amplitude with Mandelstam analyticity∣∣∣∣∣ α(t)√

t ln t

∣∣∣∣∣
t→∞

≤ const. (12)

The above asymptotic constraint can be still lowered to
a logarithm by imposing wide-angle power behaviour
for the amplitude.

The above constraints are restrictive but still leave
much room for model building.

While the parameters of meson and baryon
trajectories can be determined both from the scatteri-
ng data and from the particles spectra, this is not
true for the pomeron (and odderon) trajectory, known
only from fits to scattering data (negative values of
its argument). An obvious task is to extrapolate the
pomeron trajectory from negative to positive t-values
to predict glueball states at J = 2, 4, ..., for which,
however, no experimental evidence exists so far. Given
the nearly linear form of the pomeron trajectory,
known from the fits to the (exponential) diffraction
cone, little room is left for variations in the region of
particles (t > 0).

4.1. Additive thresholds

Apart from the Pomeron trajectory, the direct-
channel f trajectory is essential in the proton-proton
system. Guided by conservation of quantum numbers,
we include two f trajectories, labelled f1 and f2, with
mesons lying on these trajectories.

The real and imaginary part of the f1 and f2
trajectories can be derived from the parameters of the
f-resonances.

To be consistent with the meson trajectories, the li-
near term is replaced by a heavy threshold mimicking
linear behaviour in the mass region of interest (M < 5
GeV),

αP (M2) = α0 + α1(2mπ −
√

4m2
π −M2) +

+α2(
√
M2
H −

√
M2
H −M2), (13)

with MH an effective heavy threshold M = 3.5 GeV.
The f0(500) resonance. The experimental data on

central exclusive pion-pair production measured at the
energies of the ISR, RHIC, TEVATRON and the LHC
collider all show a broad continuum for pair masses
mπ+π− < 1 GeV/c2. The population of this mass
region is attributed to the f0(500). This resonance
f0(500) is of prime importance for the understanding of
the attractive part of the nucleon-nucleon interaction,
as well as for the mechanism of spontaneous breaki-
ng of chiral symmetry. In spite of the complexity
of the f0(500) resonance, and the controversy on its
interpretation and description, we take here the practi-
cal but simple-minded approach of a Breit-Wigner
resonance

A(M2) = a
−M0Γ

M2 −M2
0 + iM0Γ

. (14)

The Breit-Wigner amplitude of Eq. (14) is used
below for calculating the contribution of the f0(500)
resonance to the Pomeron-Pomeron cross section.

4.2. Dispersion relations

Meson trajectories. The nearly linear real part of
the meson trajectory can be elated to its imaginary
part by

<e α(s) = α(0) +
s

π
PV

∫ ∞
0

ds
′ =mα(s

′
)

s′(s′ − s)
. (15)

In Eq. (15), PV denotes the Cauchy Principal Value
of the integral. The imaginary part is related to the
decay width by

Γ(MR) =
=mα(M2

R)

α′ MR
. (16)

The quantity α
′
in Eq. (16) denotes the derivative

of the real part, α
′
= d<e α(s)

ds . The relation between
Γ(M) and =m α(s) requires =m α(s) > 0. In a simple
analytical model, the imaginary part is chosen as a sum
of single threshold terms



Table 1: Parameters of resonances belonging to the f1 and f2 trajectories.

IG JPC traj. M (GeV) M2 (GeV2) Γ (GeV)
f0(980) 0+ 0++ f1 0.990±0.020 0.980±0.040 0.070± 0.030
f1(1420) 0+ 1++ f1 1.426±0.001 2.035±0.003 0.055± 0.003
f2(1810) 0+ 2++ f1 1.815±0.012 3.294±0.044 0.197± 0.022
f4(2300) 0+ 4++ f1 2.320±0.060 5.382±0.278 0.250± 0.080
f2(1270) 0+ 2++ f2 1.275±0.001 1.6256±0.003 0.185± 0.003
f4(2050) 0+ 4++ f2 2.018±0.011 4.0723±0.044 0.237± 0.018
f6(2510) 0+ 6++ f2 2.469±0.029 6.096±0.143 0.283± 0.040

Figure 1: Hadron mass spectrum Ntheor from Eq. (8)
compared with the data. Additionally, Ntheor obtained
from a simple exponential mass density is also shown
(dashed line).

=mα(s) =
∑
n

cn(s−sn)1/2
(s− sn

s

)|<e α(sn)|
θ(s−sn).

(17)
The imaginary part of the trajectory shown in

Eq. (17) has the correct threshold and asymptotic
behaviour. The highest threshold, higher than all the
resonance masses lying on the trajectory, is chosen as
an effective threshold. This highest threshold ensures
that <e α(s) tends to a constant value for s→∞.

Calculated mass spectra and mass densities are
shown in Fig. 1 and Fig. 2.

Baryon trajectories. The Pomeron-proton
channel, Pp → M2

X couples to the proton trajectory,
with the I(JP ) resonances: 1/2(5/2+), F15, m =

Figure 2: Mass density ρ(m) calculated by using
the derivative of the smoothed ρ-meson trajectory
as a prefactor. The exponential density without any
prefactor is also shown (dashed line), using the same
temperature and normalization. Above the highest
threshold the derivative, and hence the density vani-
shes (not seen due to the logarithmic scale).

1680 MeV, Γ = 130 MeV; 1/2(9/2+), H19, m =
2200 MeV, Γ = 400 MeV; and 1/2(13/2+), K1,13, m =
2700 MeV, Γ = 350 MeV. The status of the first two is
firmly established, while the third one,N∗(2700), is less
certain, with its width varying between 350 ± 50 and
900± 150 MeV . Still, with the stable proton included,
we have a fairly rich trajectory, α(M2).

We use the explicit form of the trajectory, ensuring
correct behaviour of both its real and imaginary parts.
The imaginary part of the trajectory can be written in

Odessa Astronomical Publications, vol. 36 (2023) 33



34 Odessa Astronomical Publications, vol. 36 (2023)

the following way:

Imα(s) = sδ
∑
n

cn

(
s− sn
s

)λn
· θ(s− sn) , (18)

where λn = Re α(sn). Eq. (18) has the correct
threshold behaviour, while analyticity requires that
δ < 1. The boundedness of α(s) for s → ∞ follows
from the condition that the amplitude, in the Regge
form, should have no essential singularity at infinity in
the cut plane.

The real part of the proton trajectory is given by

Re α(s) = α(0) +
s

π

∑
n

cnAn(s) , (19)

where

An(s) =
Γ(1− δ)Γ(λn + 1)

Γ(λn − δ + 2)s1−δn
2F1

(
1, 1− δ;λn − δ + 2;

s

sn

)
×

×θ(sn − s) +

{
πsδ−1

(
s− sn
s

)λn
cot[π(1− δ)]−

−Γ(−δ)Γ(λn + 1)sδn
sΓ(λn − δ + 1)

2F1

(
δ − λn, 1; δ + 1;

sn
s

)}
θ(s− sn) .

The proton trajectory, also called N+ trajectory,
contains the baryons N(939) 1

2

+, N(1680) 5
2

+, N(2220)
9
2

+ and N(2700) 13
2

+. In the fit, the input data are
the masses and widths of the resonances. The quanti-
ties to be determined are the parameters cn, δ and
the thresholds sn. We set n = 1, 2, x and s1 =
(mπ + mN )2 = 1.16 GeV2, s2 = 2.44 GeV2 and sx
= 11.7 GeV2.

Other parameters of the trajectory, obtained in the
fit, are summarized below: α(0) = −0.41, δ = −0.46±
0.07, c1 = 0.51 ± 0.08, c2 = 4.0 ± 0.8 and cx = (4.6 ±
1.7) ·103. Taking the central values of these parameters
we obtain the following values for the λ’s: λ1 = 0.846,
λ2 = 2.082, λx = 11.177.

A typical curve of meson mass spectrum calculated
by means of trajectory with additive threshold is shonw
in Fig. 1. The resulting mass density is shown in Fig. 1.

5. Boiling quarks and gluons

In the previous section, we inspected the spectrum
of resonances by combining two different approaches -
statistical (Hagedorn) and dynamical (Regge). We have
focused on the region of heaviest resonances, the regi-
on where hadrons may melt transforming in a boiling
"soup"of quarks and gluons. Melting may happen in
different ways, characterized by the details for a phase
transition of colorless hadronic states into a quark-
gluon soup. In terms of hadron strings this process
corresponds to breakdown (fragmentation) of a stri-
ng. Lacking any theory of confinement providing a

quantitative description of interacting string, we will
not pursue this model. Instead we use thermodynamics
adequate in this situation. To complement the previ-
ous section, we present our arguments below related
to the possible change of phase from a different,
thermodynamic perspective.

The Hagedorn exponential spectrum of resonances
Eq. (1) results in a singularity in the thermodynamic
functions at critical temperature T = Tc and in an
infinite number of effective degrees of freedom in the
hadronic phase. Furthermore, the Hagedorn-like mass
spectrum is incompatible with the existence of the
quark-gluon phase. To form a quark phase from the
hadronic phase, the hadron spectrum cannot grow
more quickly than a power. This is possible in case
of a simple power parametrization ρ ∼ mk, compati-
ble with k ≈ 3, for the observable mass spectrum in
the interval 0.2–1.5 GeV. Assuming ideal contributions
to thermodynamical quantities we hence take energy
density in the form

ε =

∞∫
0

ρ(m)T 4σ(m/T )dm = λkT
k+5, (20)

and obtain the corresponding pressure and sound
velocity square as follows2:

p =
λk
k + 4

T k+5, c2s = 1/(k + 4). (21)

It can be shown that the existence of the forward
cone in hadronic interactions with non-decreasing total
cross sections, i.e, pomeron dominance, confirmed by
numerous experiments at high energies, results in an
asymptotic, T � m EOS p(T ) ∼ T 6 where m is a
characteristic hadron (e.g. pion) mass. The inclusion
of non-asymptotic (secondary) Regge terms produces a
minimum in the p(T ) dependence at negative pressure,
with far-reaching observable consequences.

The unorthodox p ∼ T 6 asymptotic behavior is
orthogonal to the "canonical"(perturbative QCD) form
∼ T 4. Still, it cannot be rejected e.g. when assuming a
screening of the action of large-distance van der Waals
forces at high temperatures and densities.

The asymptotic form ∼ T 6 can be extended to
lower temperatures by adding non-asymptotic Regge-
pole exchanges. The resulting EOS is

p(T ) = aT 4 − bT 5 + cT 6, (22)

where a, b, c are parameters connected with Regge-
pole fits to high-energy hadron scattering. The

2Note that the definition of entropy density s, energy density
ε and velocity of sound cs in case of µ = 0:

s(T ) = p′(T ), ε(T ) = Ts− p, c2s =
dp

dε
=

p′

Tp′′
=

s

Ts′
.
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remarkable property of this EOS, apart from the non-
standard asymptotic behavior, ∼ T 6, is the appearance
of the non-asymptotic term T 5 with negative sign,
creating a local minimum with negative pressure. This
metastable state with negative pressure can produce
inflation of the universe.

The standard bag equation of state assuming, for
simplicity, vanishing chemical potential, µ = 0:

pq(T ) =
π2

90
νqT

4 −B, (23)

ph(T ) =
π2

90
νhT

4, (24)

where pq(T ) and ph(T ) are pressure in the quark-gluon
plasma (QGP) and in the hadronic gas phase, respecti-
vely, B is the bag constant, and νq(h) is the number of
degrees of freedom in the QGP (hadronic gas),

pc = Bνh/(νq−νh), Tc = [90B/π2(νq−νh)]1/4. (25)

Since s(T ) = dp(T )/dT, the relevant formula for the
entropy density can be rewritten as

s(T ) = (2π2T 3/45)νh[1−Θ(T − Tc) + νqΘ(T − Tc).
(26)

s(T ) = s(T )/T 3, s∗c = sc/T
3
c , sc =

π2T 3
c

45
(νh + νq).

(27)

The above simple bag model EOS can also be modi-
fied (Boyko, 1990) by making the bag "constant"T -
dependent, B(T ) = AT , to produce a metastable QGP
state with negative temperature:

pq(T ) = (π2/90)νqT
4 −AT, ph(T ) = (π2/90)νhT

4.
(28)

Another important feature of this EOS is that for
Γ − γ = 0 it describes second order phase transitions,
with singular behavior of the thermal capacity at T =
Tc. Really, in this case, we have T − Tc ∼ (∆s∗)3 near
T = Tc.
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