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ABSTRACT. In the theory of the N-point gravita-
tional lens equation, two groups of problems can be dis-
tinguished. These are the so-called primal and inverse
problems. Primal problems include problems of image
definition in a specified lens for a specified source. In-
verse problems include problems of determining a lens,
source, or multiple images from one or more specified
images. Inverse problem have an important applica-
tions.

We studied the equation of the N-point gravitational
lens in a complex form. These studies became the basis
for the solution of the inverse problem in the following
formulation. N-point gravitational lens has specified.
It is necessary to determine all other images from one
of the images of a point source in N-point gravitational
lens. Determine the necessary and sufficient conditions
under which this problem has solutions.

The algebraic formulation of the problem has the
following form. The equation (of N-point gravitational
lens) has specified. It is necessary to solve the problem
of solutions unification (to express unequivocally all of
the equation solutions through one parameter).

To solve the inverse problem, we used methods of al-
gebraic geometry and function theory. Branches equa-
tions of any algebraic function admit unequivocal pa-
rameterization by Puiseux series. The solutions of
the N-point gravitational lens equation are algebraic
functions defined by a certain irreducible polynomial.
That polynomial has unequivocally defined by the N-
point gravitational lens equation. Thus, the polyno-
mial roots also admits parameterization by Puiseux se-
ries.

In simple cases, for lenses with a small number of
point masses, the solution can be obtained in a sim-
pler form. In particular, for the Schwarzschild lens
and binary lens, the inverse problem has a solution in
radicals.

Keywords: gravitational lens, source image, inverse
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AHOTAIIIA. Cepen 6esmiui mpobsaem 1 3amad,
dKi PO3MVIAAaloTh B Teopil piBHAHHA N-TOYKOBUX
rpaBiTamiftHux JiH3, MOXKHA BUJIUINTA JABI TI'pyNIH
sagaqd. Ile, Tak 3Bami, mpami i 3BOpoTHI 3ajadi.
Ho mpsaMux 3a1a9 BiTHOCATH 3a/adi BU3HATEHHS
300parkeHb B 3aJaHill JIH31 IS 3aJ]aHOrO JIzKepeJia.
Jlo 3BOpOTHUX — BU3HAYEHHs JIH3HU, JKepeya abo
6e31ivi 300parkeHb 10 OHOMY ab0 JEKIIHBKOM 33 IaHuM

300pasKEeHHIM. 3BopoTHa 3aJada  Ma€ BaXKJ/IMBE
MIPUKJIATHE 3aCTOCY BAHHSI.

Mun JIOCJTi JI2KY BAJTH PiBHSIHHS N-ToukoBol
rpaBiTamifinol JH3M B KOMILIEKCHOMY  BHIJISJI.

IIi mocrmimKeHHS CTaaX OCHOBOIO JIJIA PO3B’I3aHHS
obepHEHOI 3a/1a9i B HACTYMHIN mocTaHoBI: 3amana N
— TOYKOBa I'paBiTalliifHa JIiH3a, HEOOXiIHO, IO OIHOMY
i3 300pakeHb B Hiil TOYKOBOIO JIzKEpejia, BU3HAYUTH
BCi 1HIN 300paskeHHsT IILOTO JKepesa. BusHauuTu
HEOOXiIHI 1 JOCTATHI YMOBH, IIPU AKUX 1A 3aJa7a Ma€
PO3B’SI30K.

B anrebpaiuniit hopmysoBaHHi 3a/1aa Ma€ BUTIS/T.
3amaH0 piBHAHHS N-TOYKOBOI I'paBITAIIAHOI JIH3MU.
Heo0ximao poss’sizatu 3amady yridopMmizarii KOpeHiB
(oHO3HAYHO BUPA3UTH yCi KODEHI DPIBHAHHS depe3
OJIMH [IapaMeTp).

st posB’sianmst  obepHeHOI  3ajadi,
BUKODUCTOBYBAJIM MeTOAW ajrebpaidHol reomerpil
i Teopil dyHKIIiL. PiBusuusa rinok Oyab-skol
aarebpaiumol  QyHKIH]  JIOIMYyCKAalOTh  OJHO3HAYTHY
mapamMeTpusaliio  psgamMu  bBiopmama—/larpamka.
Kopeni piBugnasg N-toukoBol rpasiTarfifinol JiH3u €
ajredpaldHuMy (PYHKIIIMU BU3HAYECHUMU HE3BEIEHUM
MHOTOYJIEHOM. eit MHOTOYNEH  OIHO3HAYHO
BU3HAYAETHCA PIBHAHHAM N-TOYKOBOI TpaBiTarfiitaol
ginzu.  OTxKe, KOpeHi I[HOI0 MHOTOWIEHA, TaKOXK
JIOIYCKAIOTh IapaMEeTPU3AII0 psigaMu  bBropMmaHa—
Jlarpam:xa.

MU

YV mpocTuxX BUNAIKAX, MJIA JIH3 3 MaJAM YHCJIOM
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TOYKOBUX MAaC, PO3B’SI30K MOXKe OyTH OTpUMaHU
B OLIBIN MIPOCTOMY BHIJIsIAi. 30KpeMa, JJIsl JIH3H
IIsaprmuibia i GiHapHOT JIIH3U 3BOPOTHA 3a/1a9a Ma€

PO3B’SI30K B pajJuKaJiax.

Kuro4doBi cioBa: rpasitariiini jin3m, 300pasKeHHs
JKepesia, 0bepHeHa, 33/1a9a KOMILJIEKCHUH aHaJIi3.

1. Introduction

By methods of algebraic geometry we studied the
equation of N-point gravitational lens. This has led us
to a special case solution of one of the inverse problems.
Expressly, N-point gravitational lens is specified and
the coordinates of one of the image of the point source
in it are known. It is necessary to determine the co-
ordinates of all other images. Formulate the necessary
and sufficient conditions under which this problem has
solutions.

The algebraic formulation of the problem has the
following form. The equation (of N-point gravitational
lens) has specified. It is necessary to solve the problem
of solutions unification (to express unequivocally all of
the equation solutions through one parameter).

In this paper, we used methods of algebraic geome-
try and function theory. The solutions of the equation
N-point gravitational lens possible to parameterize by
Puiseux series.

For lenses with a small number of point masses,
the solution can be obtained in a simpler form. In
particular, for the Schwarzschild lens and binary lens,
the inverse problem has a solution in radicals.

2. N-point gravitational lens equation in
complex form

N-point gravitational lens equation can be written
in complex form:

(=z-w(2), (1)

wherein

SEp

where m,, - normalized point masses included in the
lens, A,, — their complex coordinates [Kotvytskiy, SH-
ablenko, Bronza, 2018; Witt, 1990]. In [Dank, Hey-
rovsky, 2015|, it has also proved that:

w = g mn
(z— A

n=1

_ 1 Pz
~deg P(2) P(2)’

(3)

where P(z2) = | | (z — A,)™.

=

n=1

Using equation (1), new proofs have been obtained
of previously known theorems about images of a point
source in the N-point gravitational lens:

- about single extended image (Einstein ring)
[Kotvytskiy et al, 2017];

- about infimum of a number of point source images
in the N-point gravitational lens [Dank & Heyrovsky,
2015];

- about supremum of a number of point source im-
ages in the N-point gravitational lens [Osmayev &
Matvienko, 2018].

Using equation (1), a new, previously unknown,
result has also been obtained. @ The problem of
unequivocal parameterization of image coordinates
has been solved. Algorithms that admit to express
unequivocal the coordinate of any image through the
same parameter have been designed. In particular,
the coordinate of one of the images might be used as
a parameter.

3.Solution of the problem of image coordi-
nates parameterization

For the Schwarzschild lens, a theorem holds.

Theorem 1. Let z be the complex coordinate of
one of the images in the Schwarzschild lens, then the
coordinate of the second image is —%.

Proof. Images in a Schwarzschild lens with coordi-

nates z and — z are images of the same source as

(4)

Indeed, equation (1) for the Schwarzschild lens in
complex form has the form:
1
=2z— = 5
(=2, o)

if mass of the lens is located at the origin of the
coordinates.

Substitute in equation (5) —1, we have:
1 1 1 1 1
(—=)=—=— =T Tz ~ =
z Z (-1 z  (—2)

=S 4a=(() = () =

Therefore, relation (4) holds.

The theorem is proved.

Each point source, which located not at the origin
of the coordinates, has exactly two point images in
the Schwarzschild lens. Therefore, the problem of im-
age coordinates parameterization for the Schwarzschild
lens is solved.

Corollary to Theorem 1. Let g1, g the affine
coordinates of one of the images in the Schwarzschild
lens, then the affine coordinates of the second image

—91(91 + 93), —92(g% +93)~
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Proof. Let z = g1 + g21, then

1 1
Re(—=) = —g1(gf + ¢3), Im(=2) = —a(97 + 63,

The corollary is proved.

For polynomials P(z) in one variable over z the field
of complex numbers, the following theorem holds.

Theorem 2. Let P(z) the polynomial over the field
of complex numbers and 2 < deg P(z) < 5, then, the
problems of parameterization of roots of the polyno-
mial P(z) are solvable in radicals.

Proof. Polynomial remainder theorem implies that
the difference P(z) — P(t) is divided exactly by the
binomial (z — ¢). Then

P(z) — P(t)
=2 6
Qe t) = T, (©)
is a polynomial in two variables. The degree of the
polynomial Q(z,t) for each of the variables

deg. (Q(2,1)) = deg;(Q(z,1)) =n — 1,

where n = deg P(z).

If n < 5, then the polynomial Q(z,t), as a polyno-
mial from the variable z, over the field of rational func-
tions from t, has the degree deg,(Q(z,t)) < 4. There-
fore, each of its n — 1 roots can be expressed in radicals
through its coefficients. Since the coefficients of the
polynomial Q(z,t) are rational functions of ¢, its roots
are unequivocally expressed in terms of t. The variable
t will be considered as a parameter.

Thus, the problem of parameterization of the roots
of a polynomial Q(z,t) is solvable in radicals.

We have an expression for n — 1 roots of polynomial
P(z) through ¢t. We will put the remaining root of
polynomial P(z) equal to t.

The theorem is proved.

Remark of the theorem 2. Let the polynomial
P(z) meet the conditions of theorem 2, then n — 1
roots of polynomial P(z) can be expressed in terms of
the remaining root. Indeed, let have ¢ equal to one of
the roots of the polynomial.

Example to theorem 2. Let the equation be spec-
ified

(8)

It is necessary to express two roots z1, zo of equation
(8) by the third zs.

Solution. Denote the polynomial standing in the
left side of equation (8) by Ps(z), i.e.

(7)

B ta+bz+e=0

Py(2) = 2% +az* + bz +c. (9)
The difference Ps(z)— Ps(t) is divided exactly by the
binomial (z — ¢):
P3(2) — P3(t) = 2° + a2z + bz + c—
— (P +at* +bt+c) =
=2 B ta(z?—t)+bz—t)=
=(z—t)(2* + 2t +t* +az +at +b)

(10)

If 2 the root of a polynomial P5(z), then from (10)

2 rat+tPtaztat+b=0 (11)

Equation (11) as regard to the variable is the

quadratic equation:

P24 (t+ta)z+t2+at+b=0 (12)

The roots of equation (12) are equal to:

t+aL\/(t+a)2—4(2+at+D)
zZ12 = .
’ 2

With the z3 =t we have:

23 +a £ \/—422 — 2az3 — 4b + a2
5 .

212 =

The roots of equation (8) z1, 2o are expressed by the
third root zs3.

In the general case, for the N-point gravitational lens
we have:

From equation (1), we have:

Yoom
(=2— AN
L

We proceed to the complex conjugation in both parts
of the equation (13):

_ N m
CZZ_Z:I,Z*A”'

Substitute the variable Z from equation (14 to (13),
we have:

(13)

I\

(14)

N

I

_ N
n=1%" Zn:l z—A,

Mn

(15)

+<7 n

Equation (15) is brought into polynomial form and
all summands are transferred to the left side of the
equation. Denote the left side of the obtained equation
by F(2,¢,().

Compute the expression

F('Z»CvC) — F(taC7C)

F(z) - F(t)

,t) = = 16
Q1) = (1)
The following theorem holds.

Theorem 3. The expression w is a polyno-

mial in two variables z and t.

Proof. The validity of the theorem follows from
polynomial remainder theorem. The residue from di-
viding the polynomial F'(z) by the difference (z — t)
is equal to F(t). And from the corollary of polyno-
mial remainder theorem. The number ¢ is the root
of the polynomial F(z) if and only if the expression
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F(z) — F(t) is divided without residue by the binomial
(z —t). The theorem is proved.

Polynomial Q(z,t) will be termed a difference poly-
nomial for polynomial F(z). Polynomial Q(z,t) as
regard to the variable z has the degree [Kotvytskiy,
Bronza, Shablenko, 2017]:

degz Q(Z’t) = degz F(Z’Q-?Z) - 1 S
<N?’4+1—-1=N?

(17)

The Z polynomial, actually, is reduced. Polynomial
is presented in the form of a product of irreducible
factors [Bronza & Kotvytskiy, 2017; Bronza, 2016], if
it is reduced.

The problem of root parameterization of a polyno-
mial Q(z,t) may be solved by using Puiseux series.
For this purpose, there is a geometric method known
as “Newton’s Diagram”, see [Chebotarev, 1948].

4. Solution of inverse problem for binary
symmetric lens

Let Sy = Sa(—a, a) is a binary symmetrical lens with
masses my = my = 0.5, which located at the —a and
a points on the real axis. The lens equation has the
form:

=z —
¢ =

ot (18)

Exclude from equation (18) and equation of complex-
conjugate to it Z, all summands are transferred to the
left side and factorized, we have:

(2= OIC - a®)(2 — a®)? + 20(z* — a®) 2+
2] = (C(z2 — a®) + 2)(z% —a®) = 0.

(19)

Denote the left side of equation (19) by F(z,¢,¢).
Compute the polynomial by the formula (16).

Q= (a2 + )t +[(—a? + )t
+ (a2 + T~ )2 + [(—a® + )2+

+(@C+C — (Ot + (20* — 2CC — 2020 )]+
(=0 + )+ (@ +T = O+ (20)
+ (2a* — 2422 - 2a222)t + (—2a*¢ + 2a2<22 - )]zt
+(—a® + )+ (a®C+C— O+

+(2a* — 2¢T° — 22082+

+(~2a%¢ + 20T — Ot + (—a® +a*T + a® + 24%C0)

Polynomial Q(z,t) as regard to the variable z has
the fourth power degree. Its coefficients are polynomi-
als in the variable t. @Q(z,t) roots may be expressed
in radicals from its coefficients. Since, as the coefli-
cients Q(z,t), there are polynomials in the variable ¢,
we have: z1 2934 = 2(t). Among other things, since the
polynomial F(z,¢,() has another root z5 = t, we have:

21,2,3,4 = 2(25) (21)

The formula (21) proved the possibility to express
all roots of the polynomial Q(z,t) by one parameter t.

Thus, the inverse problem for a binary lens is solv-
able in radicals.

In particular, if a point source is located on the real
axis, the lens has three images on the real axis, at

the points with coordinates z;,7 = 1, 2,3, the relation
holds:

21 £ 21/ 1+4(22 —a?) (22 —a? + 1)
A(zf —a?) '

22,3 = (22)

In total, a source in the binary symmetrical lens
may have either 3 or 5 images. For any real Z source

is located on the real axis, it also has either 3 or 5
images. Both cases are realized.
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