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ABSTRACT. Glueball and oddball resonances lying
on the pomeron/odderon trajectories (Chew-Frautchi
plot) with threshold and asymptotic behaviour re-
quired by analyticity and unitarity are predicted.
While the parameters of meson and baryon trajecto-
ries can be determined both from the scattering data
and from the particles spectra, this is not so for the
pomeron (and odderon) trajectory, known only from
fits to scattering data only.

The main idea in our approach is in use of a non-
linear complex Regge trajectory for the pomeron satis-
fying the requirements of the analytic S-matrix theory
yet fitting the data. The crucial task, on which glueball
(and oddball) predictions are based is the correct fit of
the pomeron (and odderon) trajectory to the data.

The basic sub-process is pomeron-pomeron scatter-
ing, producing glueballs lying on the direct-channel
pomeron trajectory. Glueball в “towers”, called
reggeized Breit-Wigner resonances, lie on this trajec-
tory. Crucial for the identification of these states is
knowledge of the non-linear complex trajectory, inter-
polating between negative and positive values of its
argument. Its parameters are found trom to the scat-
tering data. While the real part of the trajectory is
almost linear, the recovery of the imaginary part, de-
termining the widths of predicted glueballs, is an im-
portant ingredient in our approach.

Oddballs, resonances made of three gluons have the
same right of existence as glueballs made of two gluons.
Oddballs are expected to lie on the odderon trajectory
exactly in the same way as glueballs lie on the pomeron
trajectory.

The trajectory introduced in this paper can be ap-
plied also to studies or ordinary meson and baryon
spectra (Chew-Frautchi plot).

The parameters of the pomeron and odderon tra-
jectories are fitted to the data on high-energy elastic
proton-proton scattering. The fitted trajectories are
extrapolated to the resonance region to predict masses
and widths of glueballs and oddballs. Appended by
unitary symmetry, the Chew-Frautchi plot remains a

powerful tool to classify hadrons. The proposed tra-
jectory opens a new avenue of research in hadron spec-
troscopy (Chew-Frautchi plot), applicable both to or-
dinary mesons and baryons as well as to glueballs lying
on the pomeron and odderon trajectories.

Keywords: Regge trajectories, resonances,
pomeron, odderon, glueball, meson, baryon.

АНОТАЦIЯ. Передбачено резонанси глюболiв
та одболiв, що лежать на траекторiї померона
(оддерона, графiк Чю-Фраучi) з порогом та
асимптотичною поведiнкою, що задовiльняють
вимогам аналiтичнiстi та унiтарнiстi. В той час,
як параметры мезонних та барiонних траекоторiй
можна вижначити як з даних про розсiяння,
так i зi спектра часнинок, це неможливо для
траекторiй померона (та оддерона), про якi ми
маємо iнформацiю лише з даних про розсiяння.

Основною нашею iдеєю є застосуваня нелiнiйних
комплексних траекторiй Редже, що задовiльяють
вимогам аналiтичної теорiї S− матрицi i при
цьому описують данi. Критичним є згода з
експериментаьними даними.

Базовим є пiд-процес розсiяння померонiв з
продукуваням глюболiв, що лежать на траекотрiї
померона в прямому каналi. Стовпчики глюболiв,
якi ми називаємо реджезованними резонансами
Брейта-Вiгнера, лежать на цiй траекторiї.
Критичним для iдентифiкацiї цих станiв є знання
нелiнiйною компексної траекторiї, яка iнтерполює
мiж негативними та позитивними значеннями
аргумента. В той час, як реальна частина
траекторiї майже лiнiйна, знаходження її уявної
частини, яка дає визначає ширини глюболiв, є
важливою оригiнальною частиною нашого пiдходу.

Одболи - резонанси, якi складаються з трьох
глюонiв, мають таке саме право на iснування,
як i глюболи, що складаються з двох глюболiв.
Ми прогнозуємо, що одболи лежать на траекотрiї
одерона так само, як глюболи - на траекторiї
померона.
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Траекоторiї запропонованi в данiй роботi можна
застосувати також до дослiдження спектрiв
звичайних мезонiв та барiонiв.

Параметри траекторiї померона та оддерона
прив’язанi до даних високоенергетичного пружного
протон-протонного розсiювання. Пiдiгнанi
траєкторiї екстрапольованi в область резонансiв
для передбачення мас i ширин глюболiв та одболiв.
Разом з унiтарною симетрiєю, графiк Чю-Фраучi є
потужним iнструментом у класифiкацiї адронiв.
Ключовi слова: Траекторiї Редже, резонанси,
померон, оддерон, глюбол, мезон, барiон.

1. Introduction

Regge trajectories α(t) connect the scattering region,
t < 0 with particle spectroscopy, t > 0. In this way
they realize crossing symmetry and anticipate duality:
dynamics of two kinematically disconnected regions are
interrelated. The behaviour of trajectories both in the
scattering and particle region is close to linear. This
observation, combined with the properties of dual mod-
els and hadron strings resulted in a prejudice of the
linearity of Regge trajectories. Appended by unitary
symmetry, the Chew-Frautchi plot remains a powerful
tool to classify hadrons.

Unitarity imposes (Barut et al., 1962) a severe con-
straint on the threshold behavior of the trajectories:

=α(t)t→t0 ∼ (t− t0)α(t0)+1/2, (1)

while asymptotically the trajectories are constrained
by (Bugrij et al., 1973)∣∣∣∣∣ α(t)√

t ln t

∣∣∣∣∣
t→∞

≤ const. (2)

The above asymptotic constrain can be still lowered to
a logarithm by imposing (Jenkovszky, 1987 and earlier
references) wide-angle power behaviour for the ampli-
tude. While the parameters of meson and baryon tra-
jectories can be determined both from the scattering
data and from the particles spectra, this is not true
for the pomeron (and odderon) trajectory, known only
from fits to scattering data only (negative values of
its argument). An obvious task is to extrapolate the
pomeron trajectory from negative to positive values to
predict glueball states at J = 2, 4, ... non has been
found. Given the nearly linear form of the pomeron
trajectory, known from the fits to the (exponential)
diffraction cone, little room is left for variations in the
region of particles (t > 0.)

We continue the lines of research initiated in (Fiore
et al., 2016) and (Fiore et al., 2018) in which an an-
alytic pomeron trajectory was used to calculate the
pomeron-pomeron cross section in central exclusive

production measurable in proton proton scattering.
The basic idea in that approach is in the use of a non-
linear complex Regge trajectory for the pomeron sat-
isfying the requirements of the analytic S-matrix the-
ory and fitting the data. Fits imply high-energy elas-
tic proton-proton and/or proton-antiproton scattering
(with the odderon in mind!).

The basic sub-process is pomeron-pomeron scatter-
ing, producing glueballs lying on the direct-channel
pomeron trajectory, with a triple pomeron vertex.
Glueball вЂњtowersвЂќ, i.e. excited glueball states,
called reggeized Breit-Wigner resonances, lie on this
trajectory. Crucial for the identification of these states
is knowledge of the nonlinear complex trajectory,
interpolating between negative and to positive values
of its argument. Its parameters are fitted to the
scattering data. While the real part of the trajectory
is almost linear, the recovery of the imaginary part,
determining the widths of predicted glueballs, is a
highly non-trivial problem.

2. Simple analytic Regge trajectory

What is the simplest ansatz for a Regge trajectory
satisfying the following constrains: a) threshold behav-
ior imposed by unitarity, Eq. (1), b) asymptotic behav-
ior constrained by Eq. (2), c) yet compatible with the
nearly linear behavior in the resonance region (Chew-
Frautchi plot)? Attempts and explicit examples can
be found in a number of papers, see e.g. (Fiore et al.,
2016 and 2018) and (Szanyi., 2017) and earlier refer-
ences therein.

The trajectory:

α(t) =
1 + δ + α1t

1 + α2

(√
t0 − t−

√
t0)

. (3)

where t0 = 4m2
π for pomeron and t0 = 9m2

π for odderon
and δ, α1, α2 are adjustable parameters, to be fitted to
scattering (t < 0) data with the obvious constrains:
α(0) ≈ 1.08 and α′(0) ≈ 0.3 (in case of the pomeron
trajectory). Trajectory Eq. (3) has square-root asymp-
totic behavior, in accord with the requirements of the
analytic S-matrix theory.

With the parameters fitted in the scattering region,
we continue trajectory Eq. (3) to positive values of t.
When approaching the branch cut at t = t0 one has to
chose the right Riemann sheet, For t > t0 trajectory
Eq. (3) may be rewritten as

α(t) =
1 + δ + α1t

1− α2(i
√
t− t0 +

√
t0)

, (4)

with the sign "minus" in front of α2, according to the
definition of the physical sheet.

For t >> t0, |α(t)| → α1

α2

√
|t|. For t > t0 (on the

upper edge of the cut), Imα > 0.
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The intercept is α(0) = 1 + δ and the slope at t = 0
is

α′(0) = α1 + α2
1 + δ

2
√
t0
. (5)

To anticipate subsequent fits and discussions, note
that the presence of the light threshold t0 = 4m2

π

(required by unitarity and the observed "break" in
the data) results in the increasing, compared with the
"standard" value of about 0.25 GeV−2, slope.

The crucial task, on which glueball (and oddball)
predictions are based is the correct fit of the pomeron
(and odderon) trajectory to the data. Credibility of
such predictions depend on the reliability of these fits.
The most direct and reliable ways to fit the pomeron
(and odderon) trajectory are those to high-energy elas-
tic nucleon scattering, of which the LHC data on
proton-proton scattering, dominated by pomeron ex-
change are the best. The contribution of secondary
trajectories here is negligible.

The situation, however is not that simple. The
smooth, nearly exponential small-|t| part of the cone
(|t| ≤ 0.3 before the dip) at the LHC is too short to
fit the trajectory and provide its reliable interpolation
to large positive values, where glueball are expected.
Fits in this limited interval are under control and the
small deviation from and exponential of the cone,
can be parametrized by a pomeron (and odderon)
exchange within the simple Donnachie-Landshoff
model (Donnachie et al., 2002), see next Section,
where the resulting trajectory inherits the curvature,
called "break" seen both at the ISR and LHC near
t ≈ −0.1 GeV2.

3. Glueballs and Oddballs

3.1. Pomeron/odderon trajectories in Central
Exclusive Production

Central exclusive diffractive (CED) production con-
tinues to attract the attention of both theorists and
experimentalists, see e.g. Refs.(Fiore et al.,2018, Ew-
erz et al., 2019) and references therein. This interest
is triggered by LHC’s high energies, where even the
sub-energies at equal partition are sufficient to neglect
the contribution from secondary Regge trajectories and
consequently CED can be considered as a gluon factory
producing exotic particles such as glueballs.

In single-diffraction dissociation or single dissocia-
tion (SD) one of the incoming protons dissociates, in
double-diffraction dissociation or double dissociation
(DD) both protons dissociate, and in central diffrac-
tion (CD) or double-Pomeron exchange (DPE) neither

proton dissociates. These processes are listed below,

SD pp→ p∗p

or pp→ pp∗

DD pp→ p∗p∗

CD (DPE) pp→ pXp,

where p∗ represents a diffractively dissociated pro-
ton and X denotes a central system, consisting of
meson/glueball resonances. Schematic diagrams are
shown in Fig. 1.

1 2 3
f(t)

f(t)

f(t)

α(t) α(t)α(t)S

M2

M1

4 5 6

S
α(t2)

α(t1)

s2

s1
M3 M5

M4 M6

M7

M8

Figure 1: Regge-pole factorization.

The basic sub-process is pomeron-pomeron scatter-
ing, producing glueballs lying on the direct-channel
pomeron trajectory, with a triple pomeron vertex.
Glueball вЂњtowersвЂќ, i.e. excited glueball states,
called reggeized Breit-Wigner resonances, lie on this
trajectory. Crucial for the identification of these states
is knowledge of the non-linear complex trajectory, in-
terpolating between negative and positive values of its
argument. Its parameters are fitted to the scattering
data. While the real part of the trajectory is almost
linear, the recovery of the imaginary part, determining
the widths of predicted glueballs, is a highly non-trivial
problem.

In the present paper, by introducing a new model of
the Regge trajectories, both for the pomeron and odd-
eron, we continue studies along the lines of Ref. (Fiore
et al., 2016 and 2018) . We first fit the parameters
of those trajectories to high-energy elastic scattering
data then extrapolate the fitted new trajectories to
the particle region to predict the masses and widths
of the glueballs and oddballs lying respectively on the
pomeron and odderon trajectories.

3.2. Scattering amplitude, cross sections, resonances

In (Fiore et al., 2018) the resonances contribution to
pomeron-pomeron (PP) cross section was calculated
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from the imaginary part of the amplitude by use of the
optical theorem

σPPt (M2) = =m A(M2, t = 0) = (6)

= a
∑
i=f,P

∑
J

[fi(0)]J+2 =m αi(M
2)

(J −<e αi(M2))2 + (=m αi(M2))2
,

(7)
In this Section we concentrate on the pomeron. In

this case Eq. (7) reduces to

σPPt (M2) = a
∑
J

kJ+2 =m α(M2)

(J −<e α(M2))2 + (=m α(M2))2
,

(8)
where k = fi(0), and, for simplicity here we set k = 1.

We start by comparing the resulting glueball spectra
in two ways: first we plot the real and imaginary parts
of the trajectory (Chew-Frautchi plot) and calculate
the resonances’ widths by using the relation (see: e.g.
Eq. (18) in R.Fiore et al. 0404021)

Γ(s = M2) =
2=α(s)

|α′(s)|
, (9)

where α′(s) = dReα(
√
s)/d
√
s.

3.3. Regge-pole fits to high-energy elastic scattering
data

High-energy elastic proton-proton and proton-
antiproton scattering, including ISR and LHC energies
was successfully fitted with non-linear pomeron trajec-
tories in a number of paper, see (Jenkovszky et al.,
2018) and references therein. Since here we are inter-
ested in the parametrization of the pomeron (and odd-
eron) trajectories, dominating the LHC energy region,
we concentrate on the LHC data, where secondary tra-
jectories can be completely ignored in the near forward
direction.

While at lower energies, e.g. at the ISR, the diffrac-
tion cone shows almost perfect exponential behavior
corresponding to a linear pomeron trajectory in a wide
span of 0 < −t < 1.3 GeV2, violated only by the
"break" near t ≈ −0.1 GeV2, at the LCH it is almost
immediately followed by another structure, namely by
the dip at t ≈ −0.6 GeV2. The dynamic of the dip
(diffraction minimum) has been treated fully and suc-
cessfully (Szanyi, Bence et al, 2019), however those
details are irrelevant to the behavior of the pomeron
trajectory in the resonance (positive s) region and
expected glueballs there, that depend largely on the
imaginary part of the trajectory and basically on the
threshold singularity in Eq. (3).

In Fig. 2 we show a fit to the low-|t| elastic proton-
proton differential cross section data (The TOTEM col-
laboration, 2018) at 13 TeV with a simple model:

AP (s, t) = aP e
bP te−iπαP (t)/2(s/s0P )αP (t), (10)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

]2-t [GeV

210

310]2
/d

t [
m

b/
G
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elσd

=13 TeV, pps

TOTEM data

Regge SP fit

Figure 2: pp differential cross section at 13 TeV fitted
to the model: Eq. (10) and trajectory Eq. (3)
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Figure 3: Normalized pp differential cross section at
13 TeV fitted to the model Eq. (10) with trajectory
Eq. (3)

where αP (t) is given by Eq. (3) (changing variable s to
variable t). We used the norm:

dσ

dt
=

π

s2
|AP (s, t)|2. (11)

Fig. 3 shows the normalized form of the differential
cross section (used by TOTEM (The TOTEM col-
laboration, 2018)) illustrating the low-|t| "break" phe-
nomenon (Jenkovszky et al., 2018) related to the non-
linear square root term in the pomeron trajectory.
However, it should be also noted that the "break" may
result from the two-pion threshold both in the trajec-
tory and the non-exponential residue, as discussed in
(Jenkovszky et al., 2018).

Fits with the SP model is quite simple. However,
they are not sensitive to the odderon and thus are not
suitable to predict oddballs. A more advanced, DP
model was considered in (Szanyi et al., 2019) with the
result shown in the figure below.

Odessa Astronomical Publications, vol. 32 (2019) 17



3.4. Glueball and Oddball spectroscopy

The non-linear trajectory can be applied to glue-
balls and oddballs (Szanyi et al., 2019). The real and
imaginary part of the pomeron trajectory obtained by
the SP (simple model of scattering amplitude) and DP
(double-pole model) fits to high energy elastic scatter-
ing data are shown in Fig. 4 and Fig. 5. Fig. 4 shows
also the predicted glueballs (with their widths) lying on
the on the pomeron trajectory. The slope of trajectory
is shown in Fig. 6.

The predicted pomeron component of the PP total
cross section with the calculated ratios of neighboring
resonances’ widths both SP and DP case are shown in
Fig. 7.

Table 1: Fitted parameters of the pomeron and odd-
eron trajectories, see (Szanyi et al., 2019).

Pomeron
a 1.08009± 0.00005

b [GeV−2] 0.2980± 0.0021
c [GeV−1] 0.02467± 0.00128

Table 2: Fitted parameters of the pomeron and odd-
eron trajectories in the DP model, (Szanyi et al., 2019).

Pomeron Odderon
a 1.04592± 0.00005 1.6131± 0.0020

b [GeV−2] 0.3042± 0.0009 0.1987± 0.0010
c [GeV−1] 0.05880± 0.00046 0.08483± 0.00155

10− 5− 0 5 10 15 20 25 30 35

]2 [GeV2t = M

2−
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6

8

10)2
(M

Pα
J 

=
 R

e

glueball state with its width

SP model

DP model

++2

++4

++6

++8

Figure 4: Real part of the pomeron trajectory Eq. (3)
both for the SP and DP models as functions of t. The
widths of resonances (glueballs) are shown as horizon-
tal error bars.

Oddballs, resonances made of three gluons have the
same right of existence as glueballs made of two gluons.
Oddballs are expected to lie on the odderon trajectory

5 10 15 20 25 30 35

]2 [GeV2t = M

2−10

1−10

1

10)2
(M

Pα
Im

SP model

DP model

Figure 5: Imaginary part of the pomeron trajectory
Eq. (3) both for SP and DP models as functions of t.
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Figure 6: Slope of the pomeron trajectory Eq. (3) both
for SP and DP models as functions of t.
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Figure 7: The pomeron component in PP total cross
section for two different amplitude models.

exactly in the same way as glueballs lie on the pomeron
trajectory.

The real part of the odderon trajectory are shown
in Figs. 8. The predicted oddballs (with their widths)
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Figure 8: Real part of the odderon trajectory Eq. (3)
as function of t. The widths of resonances (oddballs)
are shown as horizontal error bars.
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Figure 9: Imaginary part odderon of the trajectory
Eq. (3) both for SP and DP models as functions of t.
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Figure 10: Slope of the odderon trajectory Eq. (3) both
for SP and DP models as functions of t.
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Figure 11: The odderon component in the total cross
section for two different models.
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Figure 12: Fit of the non-linear rho trajectory. Here
s0 = 4m2

π.
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Figure 13: Fit of the ∆-trajectory trajectory, s0 =
(mπ +mp)

2.
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lying on the on the odderon trajectory are also shown.

4. Mesons and baryons

The trajectory introduced in this paper can be ap-
plied also to studies or ordinary meson and baryon
spectra (Chew-Frautchi plot). Figs 12 and 13. The
theoretical (calculated using non-linear trajectory) and
experimental widths are shown as red and green lines,
respectively. Note that the mesons and baryon‘s widths
data is available, which is opposite to the pomeron case,
which allows making more precise fits.

Data about mesons and baryons were taken from M.
Tanabashi et al. (Particle Data Group), Phys. Rev. D
98, 030001 (2018) and 2019 update.

Table 3: Values of the parameters of the meson and
baryon trajectories, calculated from corresponding fits.

ρ−mesons ∆− baryons
a 0.466118± 0.001389 0.167111± 0.116851
b 0.880401± 0.002208 0.858974± 0.057756
c 0.017517± 0.000869 0.027311± 0.004087

5. Conclusions

Trajectory as Eq. (3) opens a new avenue in hadron
spectroscopy (Chew-Frautchi plot), applicable both to
ordinary mesons and baryons as well as to glueballs
lying on the pomeron and odderon trajectories. Work
in this direction is in progress. Appended by unitary
symmetry, the Chew-Frautchi plot will remains a
powerful tool in hadron spectroscopy.
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