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ABSTRACT. Analytical aspects of the classical ge-
ometrodynamics of charged black holes are considered.
The classical model of the charged BHs is the spher-
ically symmetric configuration of the electromagnetic
and gravitational fields in GR. The feature of such
dynamic systems is that, in addition to the Killing
vector, they admit two motion integrals: the total
mass M and the charge Q of the configuration. Using
these conservation laws, as well as the Hamiltonian
constraint, the momenta as functions of configuration
variables are found. In addition, the integrability
conditions for the momenta as functional derivatives
of the action are satisfied. This allows us to calculate
the functional of action, which is a solution of the
Einstein-Hamilton-Jacobi equation. Variations of
action functional with respect to the mass M and
charge Q lead to the solution of the Einstein equations
in the configuration space.
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AHOTAIIA. PosrnsiHyTo — aHAmiTHYHI — ACTEKTH
KJACUYHOI ~ TeoMerpoauHaMiku  Jjisd  ChepudHo-
cumerpuunoi (CC) koudirypauii eaekTpoMarHiTHOrO
i rpasirauiiinoro mosis 3TB. Ocobiusicrio 1ux
koH(pirypamiit € Te, MO BOHH JOIYCKAIOTH JIBA
inTerpama pyxy — 3arajgbHy Macy i 3apan.  [ia
Eitnmreitna-Tinpbepra s komdirypamii — micis
BUMIpHOI peayKIil 3a JOMOMOIOI0 TepeTBOPEHHS
Jlexkanapa  3BOAUTLCSI 0  TaMLIBTOHOBOI  Iil.
BukopucroByodn 3aKoHu 30epeKeHHS MACH 1 3apsy,
a TaKOXK TaMiJbTOHOBY B’s3, 3HaiifeHi iMmyabcn
Ak yHKIil 3MiEEEX KOHDIryparrii. Kpim Toro,
BUKOHYIOTBCS YMOBHU IHTEIDOBAHOCTI IMIyJBCIB AK
dyuKIioHanpbanx moximamx aii. Ile mo3Bosisie Ham
orpuMaTtu (QyHKIOHAT il K PO3BE’SI30K PiBHIHHSI
E#nmreiina-Taminsrona-Ako6i B dynxknionansrmx
moximuux. Bapiamii dyukmionary mii momo macu M i
3apsaay Q xkoHdirypariil nTpu3BOAATH M0 TPAEKTOPISX
PyXy B KOH(IrypamiifHoMy MIpOCTOPHI.

Knaouosi cioBa:  enmekrpomarmiTHe i rpasirarniiine
MOJIst, TEeOMETPOAWHAMIKA, B’s3u, KOHMIrypaliinmii
npocrip, piBagraa Eitnmreitna-Taminbrona- ZKo0i.

1. Introduction

As is known, the space-time metric M* for a
spherically symmetric (SS) configuration of the elec-
tromagnetic and gravitational fields in GR (as well
as with the cosmological constant) admits the Killing
vector. Therefore, in the R-region, when choosing
Killing time, the fields do not have dynamic degrees
of freedom. Therefore, to study the questions of
quantization, in [Gladush 2016, 2018], we limited
ourselves to considering the T-region, where these
fields have a dynamic meaning. The limited nature of
this direction dictates us to consider a more general,
geometrodynamics approach to the SS configuration of
electromagnetic and gravitational fields [Kuchar 1994,
Louko 1996, Makela 1998]. In this approach, a 3 +
1-splitting of M* into a one-parameter family of space-
like hypersurfaces is constructed. The corresponding
parameter labeling the hypersurfaces determines the
time coordinate of a normal reference frame and
describes the evolution of geometric quantities defined
on these hypersurfaces. This introduces the dynamics
of objects defined on these hypersurfaces in M?*.

2. The basic dynamic values
of the configuration

We start from the general Arnowitt-Deser-Misner SS
line element.

ds® = N? (da®)? — L2 (dr + N"da®)? — R%do®, (1)

where z° = ¢t and do?® = d6? + sin?0da?. In this
formula the lapse N and the shift N, as well as the
quantities L and R, which are considered as the dynam-
ical variables of the spacetime geometry, are assumed
to be functions of the time coordinate z° = ct and the
radial coordinate r only. The electromagnetic potential

is taken to be described by the SS one-form
A = Agdx® + A,dr = pdz® + ¢dr (2)

where Ay = ¢ (2%,r) and A, = ¢ (2% r). For the
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Einstein-Maxwell theory the action is The last constraint has the solution
R2
S = 1wz Jageo (§OR+FEL) =gt (3) STE=Q. (11)
+(boundary terms) It follows from here that
where g = —N2L?R*sin? 6 is the determinant of the E—¢o—, = NLQ. (12)
metric (1), @R is the Ricci scalar, and F,, = A4,,, — ’ ’ R2
Ay, 1s the electromagnetic field tensor. Inserting the This determines the electric field strength E of the

SS fields (1) and (2) and integrating over the angles o
and @ we obtain, up to boundary terms, the action

S:/ﬁd%

c- L7 S
N 2K '

(4)

(5)

Here £ the Lagrangian of system, 7 and U are the
kinetic and potential parts of system:

T=-S12R(Lo—(LN"),,)

+L(Ro—N"R,)](Ro—N"R,) (6)

R2
21CLE2
R R
U= L——R2 2—R,L, —2=R,,, 7
L + L2 L (™)
where
E:FO'I":_ r0:¢,0_<p,r~

We give the constraints that arise from the Lagrangian
(5). First we write down the primary constraints

oL
ON

Py - L

P =
N ON',

:0’

oL
P,=—=0.
9,0

Next, we write down the secondary constraints, are
the Hamiltonian, momentum (diffeomorphism) and
Gaussian ones, respectively

oL _ 1 S
aTv—_N2T+2nU—

N2 {5 2R (Lo~ (LN"),,) (Ro — N'R,)

SL(Ro—N'R,) + 4% B2} (8)
+& [L-LR242ER, L, —28R,,] =0,
oL AR Vv
= =S (Lo —(NL
SN* Kk N {( 0=l )) Ry )

. N,
-L (R,O,, ~N"Ryp = R,O)} =0,

10 (2

oL
o cor NLE>_0'

> (10)

charge Q.
The canonical momenta, which are conjugate to the
variables L, R and « are

Pp= & =~ [L(Ro— N"R,)
+R(L,o— (LN").»)], (13)
oL AR N
PL_an ;N(RO—NR) (14)
oL R? Q

A Legendre transformation, up to surface terms,
leads to the Hamiltonian action

SZ[L5R7¢7PL7PRaP¢;NaNT7<)O]

= [dz® [dr (PrRo+ PrLL o+ Py, o (16)
~NH — N"H, — ¢H,) .
where
oL K L 1 cL
ON ~ <2R2 LT RE L) s o
S (L , R R
= - = L, ) = 1
- (2 2LR + 5Bl LR,M) 0, (17)
oL
HT:_(sNT:L(PL)’T_PRRT:O7 (18)
oL 0
i dp or ¢ 0 (19)

Here the Hamiltonian, diffeomorphism and Gauss law
constraints, which are expressed through momenta

3. The mass function and momenta of field
configuration

The Einstein equations for the configuration under
consideration lead to the conservation laws of charge
@ (11) and the total mass function M (Gladush 2012).

02 9 Q2
My = — 1 .
tot 2/§R( +(VR) )+202R

(20)

For metric (1), the mass function is defined as follows

C2 1 r 2 1
Mg = S-R|14 5 (Ro—N"R,)" — R,
R3 E?
Wﬁ =m = C0n8t7 (21)
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or, by the formulae (13,14,15) one gets M in terms of
momenta

c? kN2 (P)? R,
Mot —QHF+QJ Rt (22
P2
7(# =
TR T™

Using the mass function and the Hamiltonian con-
straint (17), one can find the momenta P;, and Pr on
the CS, which allows one to construct the action of the
system as a solution of the Einstein-Hamilton-Jacobi
equation (EHJ). Indeed, taking into account (15), from
(22) we find Pp, as a function of mass m, charge @, and
configuration variables of the system

3
c
Pp = ;R\/Ftot, (23)
where
R
Fior = ﬁ + F, (24)
26m KQ?
F=-1 - . 2
+ 2R ctR? (25)

If one substitutes this expression for Py, into Eq. (17),
we get the momentum Pg

R Km
(LR”>m+(§R

It is easy to check on that the momentum constraint
(18) for the momenta (23), (26), i.e., the condition
for the invariance of the action functional, is satisfied
identically.

3

Pp=——ne
kv Fiot

1) L]. (26)

4. The action and the system trajectories in
the configuration space

The EHJ equation for the action S[L, R, ¢; Q, m; ]
can be obtained by substituting the functional deriva-
tives

ss
oL’

08

P = &2
L 5R7

P = P = — =
R ) p
into constraint (17).
However, we will find the action in a simpler way.
The last equation in (27) gives
S[L7 R7 ¢7 Q7 m; T] = SO[L7 R7 Q7 m; T} + / %(bdr )
(28)
where Sy[L, R; Q, m;7] is a functional independent of
¢, and moreover,

55
5L’

050

The expression for P;, does not contain the derivatives
of L, therefore, following (Louis-Martinez 1994), the
first equation in (29) is directly integrated:

SolL, R; Q,m; ] (30)
_ R By LvFio Ry
_?fLRdr{\/m In LVFioi—R,,- }

+G (R; M, Q; r)

or

So[L, R; Q,m;7]S (31)
= 2 [ LRy { Vi — Brarcth L)

+G (R7 M7 Q7 71) )

where G (R; M, Q;r) is a functional independent of L.
Using the second equation in (29), from (30) we obtain

059 6S
=Pr+ — .
This implies that G (R; m, Q;r) = G (m, Q;r) is a func-
tional independent of R. Here we indirectly checked the
integrability conditions of functional equations (29)
As a result, we come to the action functional in the
CS

Pp = (32)

S[L, R, ¢;:Q,m;]

3 R, L\/m+R,7'
= ?fLRdr{\/fK* 2L hlm}

+f%¢dr+fdrg (m,Q;r) ,

as a solution of the EHJ equation. Here g (M, Q;r) is
an arbitrary function of M, @ and r.

The system trajectories in the CS or the solution of
Einstein equations follow from the relations

(33)

éS L
%:cfy/Ftot—cf(r)zo, (34)
05 QVF
50~ —L RF *(25— *¢>(0) =0, (35
where the following notation is introduced
dg (m,Q;r
) = -G, (36)
dg (m,Q;r
¢(0) = —C(aQ) . (37)
Hence it can be seen, that
R2
L=\[Ff*(r) = 5, (38)
Q
o= ¢0)+f()§ (39)

The obtained relations determine the dependence of
the dynamic variables L and ¢ on the coordinate r,
the variable R(r) and its derivative with respect to r.
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From here we find the space-time metric M* and the R— VE (e + ) (52)
potential of the electromagnetic field c2 ’

ds? = N? (da)” (40)
— (Ff2(r) — F1R2) (dr + N"da")* — R%do?
A= pdz® + (¢(0) + f(r) Q) dr. (41)

The lapse N and the shift N" can be found by passing
to the Reissner-Nordstrom solution in the 7T-region
or by using the corresponding time recovery procedure.

5. Minisuperspace metric

From relation (8) we have N = /2kT /c3U). There-
fore, the action (4) can be rewritten as follows

/dxo/dr l7'—i-£NU
N 2K

S

3
- 2/dx0/dm/;—HTU (42)
or, taking into account (6), in the form
2¢3
== /dr/DQ (43)

Here we introduce the Lie differentials by the formulas

DL = (Lgo—(LN"),)ds° (44)
= dL— (LN") .d2",
DR (Ro— N"R,)dz° (45)
= dR—- N"R,da",
D¢ (0.0 — @) da’ =dp —p,.dz". (46)
Then, the action S can be rewritten as
3
:\/E/dr/DQ, (47)
K

where DQ? is the supermetric CS
=Ud0% =

4 2
— LU |~ (2RDLDR+ LDR?) + % D¢?|.(48)
In the simplest case of curvature coordinates in the
T-region, when R = ¢T'(2°), and all spatial derivatives
disappear, we have U = L and the action takes the

form
Sy = (49)
(2RdR + LdR) LdL + C%RQ de?.

= Jdr [/~

Using the field transformation

2 1 3/2
L = T —x — , (50)
cT +x cT +x

C2 Yy

ﬁc7'+o:’

(51)

supermetric of DQ? is reduced to the Lorentz form, i.e.
CS is flat
dQ? = LOZ = —c2d7* + di* + dy? (53)
It follows that minisupermetrics admits the motions
group O(1,2). Note that the supermetric kinetic part

3 =T (dz°)”

4 2
= & [~22RDLDR + LDR* + &£ D?|, (54)

is conformally flat.

6. Conclusions

It is to be noted that the inequality Fioy = R%./L* +
F > F > 0 in equation (23) determines the classically
admissible region. Its boundary is given by the equa-
tion roots Fyo; = 0. On the other hand, the T-region
of Reissner-Nordstrom space-time is specified by the
condition F' > 0, while the horizon is determined by
the equation F' = 0. It is easy to see that the T-region
is contained in a classically admissible region.

It is also interesting to note that the complete inte-
grability of the considered system is preserved when
the cosmological constant is added. The complete
integrability of the system is due to the fact that the
considered field configuration in the SS case does not
have local degrees of freedom. However, the inclusion
of a scalar field in the configuration completely
destroys the picture. In this case, the mass function is
not conserved, and the corresponding equations in the
general case cannot be analytically solved. Physically,
this is due to the fact that spherical symmetry allows
scalar field waves. In this case, the configuration turns
out to be a dynamic system with an infinite number
of freedom degrees.
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