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ABSTRACT. Analytical aspects of the classical ge-
ometrodynamics of charged black holes are considered.
The classical model of the charged BHs is the spher-
ically symmetric con�guration of the electromagnetic
and gravitational �elds in GR. The feature of such
dynamic systems is that, in addition to the Killing
vector, they admit two motion integrals: the total
mass M and the charge Q of the con�guration. Using
these conservation laws, as well as the Hamiltonian
constraint, the momenta as functions of con�guration
variables are found. In addition, the integrability
conditions for the momenta as functional derivatives
of the action are satis�ed. This allows us to calculate
the functional of action, which is a solution of the
Einstein-Hamilton-Jacobi equation. Variations of
action functional with respect to the mass M and
charge Q lead to the solution of the Einstein equations
in the con�guration space.

Keywords: electromagnetic and gravitational �elds,
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ÀÍÎÒÀÖIß. Ðîçãëÿíóòî àíàëiòè÷íi àñïåêòè
êëàñè÷íî¨ ãåîìåòðîäèíàìiêè äëÿ ñôåðè÷íî-
ñèìåòðè÷íî¨ (CC) êîíôiãóðàöi¨ åëåêòðîìàãíiòíîãî
i ãðàâiòàöiéíîãî ïîëiâ ÇÒÂ. Îñîáëèâiñòþ öèõ
êîíôiãóðàöié ¹ òå, ùî âîíè äîïóñêàþòü äâà
iíòåãðàëà ðóõó � çàãàëüíó ìàñó i çàðÿä. Äiÿ
Åéíøòåéíà-Ãiëüáåðòà äëÿ êîíôiãóðàöi¨ ïiñëÿ
âèìiðíî¨ ðåäóêöi¨ çà äîïîìîãîþ ïåðåòâîðåííÿ
Ëåæàíäðà çâîäèòüñÿ äî ãàìiëüòîíîâî¨ äi¨.
Âèêîðèñòîâóþ÷è çàêîíè çáåðåæåííÿ ìàñè i çàðÿäó,
à òàêîæ ãàìiëüòîíîâó â'ÿç, çíàéäåíi iìïóëüñè
ÿê ôóíêöi¨ çìiííèõ êîíôiãóðàöi¨. Êðiì òîãî,
âèêîíóþòüñÿ óìîâè iíòåãðîâàíîñòi iìïóëüñiâ ÿê
ôóíêöiîíàëüíèõ ïîõiäíèõ äi¨. Öå äîçâîëÿ¹ íàì
îòðèìàòè ôóíêöiîíàë äi¨ ÿê ðîçâ¹'ÿçîê ðiâíÿííÿ
Åéíøòåéíà-Ãàìiëüòîíà-ßêîái â ôóíêöiîíàëüíèõ
ïîõiäíèõ. Âàðiàöi¨ ôóíêöiîíàëó äi¨ ùîäî ìàñè M i
çàðÿäó Q êîíôiãóðàöi¨ ïðèçâîäÿòü äî òðà¹êòîðiÿõ
ðóõó â êîíôiãóðàöiéíîìó ïðîñòîðû.

Êëþ÷îâi ñëîâà: åëåêòðîìàãíiòíå i ãðàâiòàöiéíå
ïîëÿ, ãåîìåòðîäèíàìiêà, â'ÿçè, êîíôiãóðàöiéíèé
ïðîñòið, ðiâíÿííÿ Åéíøòåéíà-Ãàìiëüòîíà-ßêîái.

1. Introduction

As is known, the space-time metric M4 for a
spherically symmetric (SS) con�guration of the elec-
tromagnetic and gravitational �elds in GR (as well
as with the cosmological constant) admits the Killing
vector. Therefore, in the R-region, when choosing
Killing time, the �elds do not have dynamic degrees
of freedom. Therefore, to study the questions of
quantization, in [Gladush 2016, 2018], we limited
ourselves to considering the T-region, where these
�elds have a dynamic meaning. The limited nature of
this direction dictates us to consider a more general,
geometrodynamics approach to the SS con�guration of
electromagnetic and gravitational �elds [Kuchar 1994,
Louko 1996, Makela 1998]. In this approach, a 3 +
1-splitting ofM4 into a one-parameter family of space-
like hypersurfaces is constructed. The corresponding
parameter labeling the hypersurfaces determines the
time coordinate of a normal reference frame and
describes the evolution of geometric quantities de�ned
on these hypersurfaces. This introduces the dynamics
of objects de�ned on these hypersurfaces in M4.

2. The basic dynamic values

of the con�guration

We start from the general Arnowitt-Deser-Misner SS
line element.

ds2 = N2
(
dx0
)2 − L2

(
dr +Nrdx0

)2 −R2dσ2 , (1)

where x0 = ct and dσ2 = dθ2 + sin2 θdα2. In this
formula the lapse N and the shift Nr, as well as the
quantities L and R, which are considered as the dynam-
ical variables of the spacetime geometry, are assumed
to be functions of the time coordinate x0 = ct and the
radial coordinate r only. The electromagnetic potential
is taken to be described by the SS one-form

A = A0dx
0 +Ardr = ϕdx0 + φdr , (2)

where A0 = ϕ
(
x0, r

)
and Ar = φ

(
x0, r

)
. For the
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Einstein-Maxwell theory the action is

S = − 1
16πc

∫
M(4)

(
c4

κ
(4)R+ FµνFµν

)√
−gd4x (3)

+(boundary terms) ,

where g = −N2L2R4 sin2 θ is the determinant of the
metric (1), (4)R is the Ricci scalar, and Fµν = Aν,µ −
Aµ,ν is the electromagnetic �eld tensor. Inserting the
SS �elds (1) and (2) and integrating over the angles α
and θ we obtain, up to boundary terms, the action

S =

∫
Ld2x , (4)

L =
1

N
T +

c3

2κ
NU . (5)

Here L the Lagrangian of system, T and U are the
kinetic and potential parts of system:

T = − c3

2κ [2R (L, 0 − (LNr), r)

+L (R,0 −NrR,r)] (R,0 −NrR,r) (6)

+ 1
2c
R2

L E2 ,

U = L− 1

L
R2
r + 2

R

L2
RrLr − 2

R

L
Rrr , (7)

where

E = F0r = −Fr0 = φ, 0 − ϕ,r .

We give the constraints that arise from the Lagrangian
(5). First we write down the primary constraints

PN =
∂L
∂N,0

= 0, PNr =
∂L
∂Nr

,0

= 0,

Pϕ =
∂L
∂ϕ,0

= 0 .

Next, we write down the secondary constraints, are
the Hamiltonian, momentum (di�eomorphism) and
Gaussian ones, respectively

∂L
∂N = − 1

N2T + c3

2κU =

− 1
N2

{
− c3

2κ2R (L, 0 − (LNr), r) (R,0 −NrR,r)

− c3

2κL (R,0 −NrR,r)
2

+ 1
2c
R2

L E2
}

(8)

+ c3

2κ

[
L− 1

LR
2
r + 2 R

L2RrLr − 2RLRrr
]

= 0 ,

δL
δNr

=
c3

κ

R

N

{(
L, 0 −

V

N
(NrL), r

)
R,r (9)

−L
(
R,0r −NrR,rr −

N,r
N

R,0

)}
= 0 ,

δL
δϕ

=
1

c

∂

∂r

(
R2

NL
E

)
= 0 . (10)

The last constraint has the solution

R2

NL
E = Q . (11)

It follows from here that

E = φ, 0 − ϕ,r = NL
Q

R2
. (12)

This determines the electric �eld strength E of the
charge Q.
The canonical momenta, which are conjugate to the

variables L,R and α are

PR = ∂L
∂R,0

= − c3

κN [L (R0 −NrRr)

+R(L, 0 − (LNr), r)] , (13)

PL =
∂L
∂L,0

= −c
3

κ

R

N
(R0 −NrRr) , (14)

Pφ =
∂L
∂φ,0

=
R2

cNL
E =

Q

c
. (15)

A Legendre transformation, up to surface terms,
leads to the Hamiltonian action

SΣ[L,R, φ, PL, PR, Pφ;N,Nr, ϕ]

=
∫
dx0

∫
dr (PRR,0 + PLL,0 + Pφφ, 0 (16)

−NH −NrHr − ϕHϕ) .

where

H = − ∂L
∂N

=
κ

c3

(
L

2R2
P 2
L −

1

R
PRPL

)
+

cL

2R2
P 2
φ

−c
3

κ

(
L

2
− 1

2L
R2
,r +

R

L2
R,rL,r −

R

L
R,rr

)
= 0 , (17)

Hr = − δL
δNr

= L (PL), r − PRRr = 0 , (18)

Hϕ = −δL
δϕ

= − ∂

∂r
Pφ = 0 . (19)

Here the Hamiltonian, di�eomorphism and Gauss law
constraints, which are expressed through momenta

3. The mass function and momenta of �eld

con�guration

The Einstein equations for the con�guration under
consideration lead to the conservation laws of charge
Q (11) and the total mass functionM (Gladush 2012).

Mtot =
c2

2κ
R
(
1 + (∇R)2

)
+

Q2

2c2R
. (20)

For metric (1), the mass function is de�ned as follows

Mtot =
c2

2κ
R

[
1 +

1

N2
(R,0 −NrR,r)

2 − 1

L2
R2
,r

]
+

R3

2c2N2

E2

L2
= m = const , (21)
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or, by the formulae (13,14,15) one gets M in terms of
momenta

Mtot =
c2

2κ

[
R+

( κ
c3

)2 (PL)
2

R
− R

L2
R2
,r

]
(22)

+
P 2
φ

2R
= m.

Using the mass function and the Hamiltonian con-
straint (17), one can �nd the momenta PL and PR on
the CS, which allows one to construct the action of the
system as a solution of the Einstein-Hamilton-Jacobi
equation (EHJ). Indeed, taking into account (15), from
(22) we �nd PL as a function of mass m, charge Q, and
con�guration variables of the system

PL =
c3

κ
R
√
Ftot , (23)

where

Ftot =
R2
,r

L2
+ F , (24)

F = −1 +
2κm

c2R
− κQ2

c4R2
. (25)

If one substitutes this expression for PL into Eq. (17),
we get the momentum PR

PR =
c3

κ
√
Ftot

[(
R

L
R, r

)
,r

+
( κm
c2R
− 1
)
L

]
. (26)

It is easy to check on that the momentum constraint
(18) for the momenta (23), (26), i.e., the condition
for the invariance of the action functional, is satis�ed
identically.

4. The action and the system trajectories in

the con�guration space

The EHJ equation for the action S[L,R, φ;Q,m; r]
can be obtained by substituting the functional deriva-
tives

PL =
δS

δL
, PR =

δS

δR
, Pφ =

δS

δφ
=
Q

c
(27)

into constraint (17).
However, we will �nd the action in a simpler way.

The last equation in (27) gives

S[L,R, φ;Q,m; r] = S0[L,R;Q,m; r] +

∫
Q

c
φdr ,

(28)
where S0[L,R;Q,m; r] is a functional independent of
φ, and moreover,

PL =
δS0

δL
, PR =

δS0

δR
. (29)

The expression for PL does not contain the derivatives
of L, therefore, following (Louis-Martinez 1994), the
�rst equation in (29) is directly integrated:

S0[L,R;Q,m; r] (30)

= c3

κ

∫
LRdr

{√
Ftot − R,r

2L ln
L
√
Ftot+R,r

L
√
Ftot−R,r

}
+G (R;M,Q; r)

or

S0[L,R;Q,m; r]S (31)

= c3

κ

∫
LRdr

{√
Ftot − R,r

L arcth
R,r

L
√
Ftot

}
+G (R;M,Q; r) ,

where G (R;M,Q; r) is a functional independent of L.
Using the second equation in (29), from (30) we obtain

PR =
δS0

δR
= PR +

δS

δR
G (R;m,Q; r) . (32)

This implies thatG (R;m,Q; r) = G (m,Q; r) is a func-
tional independent ofR. Here we indirectly checked the
integrability conditions of functional equations (29)
As a result, we come to the action functional in the

CS

S[L,R, φ;Q,m; r] (33)

= c3

κ

∫
LRdr

{√
Ftot − R,r

2L ln
L
√
Ftot+R,r

L
√
Ftot−R,r

}
+
∫
Q
c φdr +

∫
drg (m,Q; r) ,

as a solution of the EHJ equation. Here g (M,Q; r) is
an arbitrary function of M,Q and r.
The system trajectories in the CS or the solution of

Einstein equations follow from the relations

δS

δm
= c

L

F

√
Ftot − cf (r) = 0 , (34)

δS

δQ
= −LQ

√
Ftot

cRF
+

1

c
φ− 1

c
φ(0) = 0 , (35)

where the following notation is introduced

f (r) = −∂g (m,Q; r)

c∂m
, (36)

φ(0) = −c∂g (m,Q; r)

∂Q
. (37)

Hence it can be seen, that

L =

√
Ff2 (r)−

R2
,r

F
, (38)

φ = φ(0) + f (r)
Q

R
. (39)

The obtained relations determine the dependence of
the dynamic variables L and φ on the coordinate r,
the variable R(r) and its derivative with respect to r.
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From here we �nd the space-time metric M4 and the
potential of the electromagnetic �eld

ds2 = N2
(
dx0
)2 − (40)

−
(
Ff2(r)− F−1R2

,r

) (
dr +Nrdx0

)2 −R2dσ2 ,

A = ϕdx0 +

(
φ(0) + f (r)

Q

R

)
dr . (41)

The lapse N and the shift Nr can be found by passing
to the Reissner-Nordstrom solution in the T -region
or by using the corresponding time recovery procedure.

5. Minisuperspace metric

From relation (8) we have N =
√

2κT /c3U). There-
fore, the action (4) can be rewritten as follows

S =

∫
dx0

∫
dr

(
1

N
T +

c3

2κ
NU

)
= 2

∫
dx0

∫
dr

√
c3

2κ
T U (42)

or, taking into account (6), in the form

S =

√
2c3

κ

∫
dr

∫
DΩ (43)

Here we introduce the Lie di�erentials by the formulas

DL = (L, 0 − (LNr), r) dx
0 (44)

= dL− (LNr), rdx
0 ,

DR = (R,0 −NrR,r) dx
0 (45)

= dR−NrR,rdx
0 ,

Dφ = (φ, 0 − ϕ,r.) dx0 = dφ− ϕ,r.dx0 . (46)

Then, the action S can be rewritten as

S =

√
2c3

κ

∫
dr

∫
DΩ , (47)

where DΩ2 is the supermetric CS

DΩ2 = UdΩ2
0 =

= 1
2cU

[
− c

4

κ

(
2RDLDR+ LDR2

)
+ R2

L Dφ2
]
.(48)

In the simplest case of curvature coordinates in the
T -region, when R = cT (x0), and all spatial derivatives
disappear, we have U = L and the action takes the
form

SΣ = (49)

= c3

κ

∫
dr
∫ √
− (2RdR+ LdR)LdL+ κ

c4R
2 dφ2.

Using the �eld transformation

L2 =
1

cτ + x

(
cτ − x− y2

cτ + x

)
, (50)

φ =
c2√
κ

y

cτ + x
, (51)

R =

√
κ

c2
(cτ + x) , (52)

supermetric of DΩ2 is reduced to the Lorentz form, i.e.
CS is �at

dΩ2 = LΩ2
0 = −c2dτ̃2 + dx̃2 + dy2 , (53)

It follows that minisupermetrics admits the motions
group O(1, 2). Note that the supermetric kinetic part

dΩ2
0 = T

(
dx0
)2

= 1
2c

[
− c

4

κ 2RDLDR+ LDR2 + R2

L Dφ2
]
, (54)

is conformally �at.

6. Conclusions

It is to be noted that the inequality Ftot = R2
,r/L

2 +
F > F > 0 in equation (23) determines the classically
admissible region. Its boundary is given by the equa-
tion roots Ftot = 0. On the other hand, the T -region
of Reissner-Nordstrom space-time is speci�ed by the
condition F > 0, while the horizon is determined by
the equation F = 0. It is easy to see that the T -region
is contained in a classically admissible region.
It is also interesting to note that the complete inte-

grability of the considered system is preserved when
the cosmological constant is added. The complete
integrability of the system is due to the fact that the
considered �eld con�guration in the SS case does not
have local degrees of freedom. However, the inclusion
of a scalar �eld in the con�guration completely
destroys the picture. In this case, the mass function is
not conserved, and the corresponding equations in the
general case cannot be analytically solved. Physically,
this is due to the fact that spherical symmetry allows
scalar �eld waves. In this case, the con�guration turns
out to be a dynamic system with an in�nite number
of freedom degrees.
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