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ABSTRACT. We consider spherically-symmetric
solution of the 5D Kaluza-Klein theory, which metric
coefficients depend on time only. When we construct
the appropriate 441 splitting of the five-dimensional
space and then perform the conformal transformation
we get the cosmological model with hypercylinder
topology. There are scalar and electromagnetic fields
with contact interaction. Besides this, these fields
correspond to the inner region of the black hole
in the appropriate choice of integration constants.
Using 24241 splitting technics and reduction we
get the lagrangian of the model. After that we build
the canonical formalism of the theory, which admits
constraints. These are Hamilton, momentum and
Gauss secondary constraints. Momentum constraint is
satisfied trivially in the homogeneous case. From the
Hamilton constraint we obtain the Einstein-Hamilton-
Jacobi equation. 5D metric components arise from
the solutions of this equation. Main puprpose of this
work is to investigate properties of this metric. It
turns out that the configurations with removable and
unremovable electric field are possible to exist in this
case [Gladush et al., 2015]. Removable electric field
can be eliminated with 5D coordinate transformation.
Time dependence of the spacetime metric conformal
factor is researched. This conformal factor corresponds
to the size of the Universe in cosmological model.
It turns out that such model describes gravitational
collapse of the Universe in the distant future. However,
depending on the integration constants signs, there
can present some relatively small initial inflation.

Keywords: five-dimensional space-time: Kaluza-
Klein model; time-dependent solution: black hole
model, cosmological model. AHOTAIIIS. Bynyernes
i HocaimKyerhes chepuIHO-CUMETPUYHAN PO3B’I30K
warusuMmipaol  teopil Kamynu-Kireitna, werpuami
KoeiIienTn KOl 3a/1eKaTh TiAbKK Bix gacy. [lpn ma-
JIe2KHOMY 4-+1- po3Miernieri m’ sTUBUMIPHOTO TTPOCTOPY
Ta, KOH(MOPMHOMY Bi0oOparkKeHHi, BOHH BiJIOBiIal0ThH
KOCMOJIOTIUHIft MOJesi 3 TilepIuIiHIPUIHOI TOIIO-
JIOTI€IO 31 CKAJIAPHUM Ta €JeKTPOMArHiTHUM IOJISIMU,
IO B3AEMOJIIOTHh MizK CODOI0 KOHTAKTHUM YHHOM. 3

inmoro OOKy, pW BiAMOBiTHOMY BHOOpI cTaaMx iHTe-
IpYBaHHs, BOHHW BiJIIIOBI/IAIOTh BHYTPINIHINA YacTHHI
YOpHOI JIipu II'ITUBUMIPHOI Teopil. 3a JI0IMOMOrOI0
TexXHIKH 242 1-po3mensieHHs IpocTOpy 1 BCiX cCyIry-
THIX BEJIMYUH Ta BIIMMOBIAHOI PEMYKINl OTPUMYETHCS
narpamxkian Mogeni. Ha ocmoBi omep2KaHOTO Jarpam-
XKiaHy OyayeTbcsi KaHOHIUHUN opMasizM Teopii, 1o
MicTuTh MHOXKHMKEM Jlarpanxka. Ilum MHOXKHEUKaM
BIJITOBITAIOTH BTOPUHHI TaMLIHTOHOBA, IMITYJILCHA Ta
raycoBa B’s3i. Y OIHODPIAHOMY BUIAJKY IMITyJIbCHA
B’sI3b BUKOHYETHCA TOTOXKHO, & 3 TaMiJbTOHOBOI BU-
muBae piBHaHHA Eitnmreitna-Laminbrona- Akobi. 13
PO3B’SI3KiB IHOTO PIBHAHHSA OTPUMYEMO KOMITOHEHTH
METPHUKH IT' ITUBUMIpHOTO mpocTopy. OCHOBHMIA 3MicT
i€l pobOTH MOJIATAa€ y BUBYEHHI 1i€1 MeTpuku. Buss-
JISIETHC, M0 Yy BUIAJKY, IO PO3IVISIAETHCS, MOXKJINBI
PO3B’S3KH 3 YCYBHUM 1 HE YCYBHUM €JIEKTPUIHIM
nosiem [Gladush et al., 2015]. V nepmomy Bunajxy,
3a, JIOIIOMOTOIO BiJIITOBIHOrO I’ ITUBUMIPHOTO KOOD/IH-
HATHOTO TIEPETBOPEHHS €JIEKTPUYHE I10JIe MOXKe OyTu
ycyryTo. JlocmimKyerbcss dacoBa 3aJI€KHICTh KOH-
GbOPMHOTO MHOXKHHKA IIPOCTOPOBO-4ACOBOI METPUKH,
AKkuit onucye po3mip BeecBiTy y KocMmostoriuHiit Mmoeti.
Bussnserbces, mo Taka MOJeIb OIMUCY€E IpaBiTaliitHuit
KoJiaric BeecBity y BijjiaseHoMy MaiOyTHBOMY. Brim,
3aJIe’KHO BiJl 3HAKy CTaJUX IHTerpyBaHHs, y I KO-
CMOJIOTI9HIT MOJIesTi MOXKe OyTH NMPHUCYTHE MOYATKOBE
MIOPIBHAHO HE3HAYHE PO3IIUPEHHS.

Kutro4oBi ciioBa: ’ssTUBUMIpHUIT IIPOCTIp-Yac: Teopis
Kanymu-Kieitrna; T-poss’si3ok: Mopesns 9opHOI HipH,
KOCMOJIOT1YHA, MOJEJIb.

Used conventions: Greek indices u, v, p etc. run from
0 to 3, latin indices from the beginning of alphabet
a, b, ¢ etc. get values 0 and 1. Latin indices from the
middle of alphabet i, j, k etc. get values 2 and 3.

1. Introduction

In the Kaluza-Klein theory, we start from the 5D
space metrics and Einstein-Hilbert action for 5D gravi-
tational field (¢ — 4D scalar field, A, — potential of the
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electromagnetic field):

ds®? = g, datdx” — ¥ (dz + Aﬂdx“)2 (1)

S= / V—g®ORO dzdx (2)

Here R(® and \/—g¢®) are the scalar curvature and
metrics determinant for the 5D manifold, respectively.
The last one consists of ordinary 4D space-time and
the fifth dimension (which is parametrized by z coordi-
nate). It is also assumed in the Kaluza-Klein theory
that there is a Killing vector along this fifth dimensi-
on. Because of this assumption, geometrical quantiti-
es in our model do not depend on z as soon as such
dependence does not have physical manifestation in the
theory. From these facts after certain transformations
(2) has the following form (F,, is an electromagnetic
strength tensor):

S = Al/(

w) + i&’aﬂ”) V=gd'x

R(4) =R" )[QW] Guv = e—%w
(3)
In present article we research the spherically-

symmetric solutions of the 5D Kaluza-Klein model,
which depends on time only. Such solutions can
represent the inner region of the black hole with scalar
field or a cosmological model, if the event horizon of
that field configuration does not exist.

We are going to work out the field model solutions
using Hamilton-Jacobi method and to demonstrate
usefulness of that methods for analysis of the
homogeneous field configurations. Solution of the same
problem can be found in [Hongya Liu et al., 1993], but,
contrary to our treatment, that result was obtained
through Einstein equations.

2. Initial treatment

In the spherically-symmetric case 4D spacetime
metrics in ADM-parametrisation writes:

Gupdrtdz” = e™? |N?dt* — e* (dr + N"dt)? — epdoﬂ

do? = db* + sin? Odp?
(4)
Here A, ¢ and p are the dynamical variables of
the model, N and N" are the Lagrange multipliers.
EM field potential has only 2 non-zero components,
namely A, which is a dynamical variable, and Ag —
Lagrange multiplier. Therefore, Hamilton function of
the model depends on the variables A, p, ¥, A; and
their conjugate momentums Py, P,, Py, Pga. Using
(3) and (4), in the spherically-symmetric case we obtain
from canonical approach this set of constraints:

Hi~0 H,~0 0.Pgy~0 (5)

These equalities manifest that action & does not
depend on time reparametrizaions and diffeomorfisms
of the r and z coordinates, respectively. Because of
the field configuration homogeneity, second and thi-
rd constraints are satisfied automatically. Particularly,
from the third constraint we have that Pgy = Q(t),
where @ is an electric charge located in the spatial
coordinate origin. Therefore, we have only one equation
in our model, namely the Hamilton constraint H ~ 0:

le + Q%M —4R2M P =0

3

2 ™ T2 z2

K= /dqb/sin@d@/dr/dz:llﬂAzAr
0 0 T1 21

(6)

As we can see, H, does not contain Aj;, so the
corresponding momentum is conserved — () = const.

H, =P} —2P\P, +

3. Einstein-Hamilton-Jacobi equation

3.1. Equation

Let us introduce a new set of generalized coordinates
in our model:

W=A-3Y  E=Atp =%

New canonically conjugate momentums:

(7)

(8)

Using (7) and (8) we simplify the expression for Hami-
Iton constraint. Substituting momentums with deri-
vatives of the action & with respect to the appropriate
conjugate coordinates, we get:

95\*_(0s 1, 408
Ow o€

(9)
We have obtained the Einstein-Hamilton-Jacobi

equation for our field configuration. Here is a soluti-
on of this equation:

C /
SZQAl—‘rZQw-l-CQn-i—Sg/df 012—4/€265+
1
Z 2 _ 02 _ 02w
sw/doJ\/Cl 1202 Q?%*e

C1 and C denote integration constants, s, and s¢ are
the sign constants — choosing them be equal to 1 or —1
we can get all 4 families of solutions for (9). As it menti-
oned in Hamilton-Jacobi method, now we differentiate
S with respect to Cq, Cy and Q:

25 25
aC,

P\=P,+FP P,=F Py=-3P,+PF,

oS oS

2w 2.6 _
% 877) +Q%e” —4k“e 0

oS

:Bl %

= B2 = fo
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Here 31, f2 and Bg are some constants.

%SW/F(w)dw

/F(w)dw

Bo = A1 — %SW/QF(w)e“’dw (10)

dg
=501 | ——=——=+
Pr=se 1/ C? — 4k2eé

1 1
[32 = ZW—F’I?— ﬂswC’g

F(w) function denotes:

-1
.ﬂw=<¢bﬂ—g@—Q%ﬂ

Constants f1, B2 and Bg describes the initial conditi-
ons, that are values of field variables at certain ty. As
to we can use the event horizon coordinate (see next
section) of the field configuration, or just extremum
point of the R(t) function.

3.2. Time-dependent solution

Solving (10) with respect to w, £, p and A; we
obtain expressions for three field variables as functions
of the fourth one and the integration constants. Parti-
cularly, &, p and A; can be expressed as functions of w.
However, it is convenient for further treatment to work
out the field potentials as functions of time variable ¢.
Due to the model reparametrization invariance, time
coordinate can be chosen arbitrarily. We introduce ¢
variable in the following way:

t= /F(w)dw (11)

We emphasize that time dependency could be chosen
differently, that is using momentum definitions in the
Lagrange and Hamilton-Jacobi approaches, e.g.:

oS
oA
The left part of this equation contains velocities and
multiplier N(¢), but the right part consists only of
coordinates. Chosing N(¢) and solving this differential
equation we obtain time dependency.

Using (7), we write down components of the space-
time metrics, EM field strength and scalar field as
functions of time (Q # 0):

kePe 7" d—’t’
N =+ 1 T2, (12)
T+ sy Sw T 5V O — 4r?e
oo (O1 = 5C3) e (2t supCot] g
o 2
Q cosh (%\/6’12—71—12022)
Q*Ct exp [—48; — 5,3 Cht]

e~V = R? =

4:%2 (012 — lecg) .COSh2 (61 + Sgswi |Cl‘ t)
(14)

exp[-w(t)]

— Cz >0 Cz <0

Fig. 1: Qualitative time dependency of the conformal
factor e=¥ (s, = 1)

_dA1 _012—%022 ot 9 1 9

Foo="gr = "a,g ot 2V e T @
(15)

_ 1 1 tlor— Lo

w—ﬁg+sw2402t+21nlcosh<2 Cs 1202>
(16)

Here we chose Lagrange multiplier N” be equal to zero.
As the field configuration is homogeneous such choice
does not affect solutions listed above.

4. Solution properties

4.1. Event horizon

By definition, event horizon is an isotropic surface of

the scale factor R:

VR?| =0

(VR)T| .
Here t = t, denotes event horizon coordinate. Besides
this, we require that scalar field v is equal to zero on
the horizon (black hole does not have scalar "hairs").
From the following equalities, we obtain the event hori-
zon coordinate t, and integration constants condition
under which field configuration has such horizon:

dRQ‘
t=t,

dt
From the first equality we have this complex of equati-
ons with respect to t,:

1
N2

Pt =tg) =0 (17)

C 1 1
+5¢4/CF — dr2eMtr (18)

1 Cs

—vg
tanh (81 + seswt [Cilty) = —sed [Cal

The first equation is transcendental, while the second
immediately writes:
481 8¢s
. ﬁl £Ow > (19)
|Cl

2

1C
_355

[C1]

4
g = ——arcth

|Cy|

SeSw
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Putting (19) to the second equation in (17) (using
expression for ¢ in (16)) we get the event horizon exi-
stence condition for integration constants.

Having (19) and initial data ¢(t = t;) = 0 we get
rid of 1 and (5 in the expressions for event horizon
radius R, and scalar field:

QC, cosh (

€t~ $5C3)

Ry = 2k4/CT — 1 02 cosh [arcth ( 55% ‘gf‘ﬂ (20)
) = swicz o)+ CObh (%,/012 %C’%)

cosh (%1/ %C’ )

4.2. Singularities of the spacetime geometry

In order to investigate geometrical singularities in
present configuration we calculate the Kretchman
invariant K (t) for the obtained spacetime metrics (12)-
(14). Singularities of this invariant as function of time
(let us denote them as t5) point to the geometrical si-
ngularities. By definition:

K (1) = RiY, RO

It is quite complicated to get it in the direct calculation
from spacetime metrics components. Because of this,
we apply the 242 splitting technique to this issue. Fi-
rstly, let us represent spacetime manifold as a tensor
product R? ® S2, where the first multiplier (we denote
it as M) is a two-dimensional manifold with time
and radial coordinates, and the second one (which is
denoted as MU1) is a two-dimensional sphere with
radius R(t). Secondly, we write tensor quantities in the
vector basis adapted for splitting. According to this,

Kretchman invariant can be written as follows:
K(t) — R((:;;)deR(ﬁl)abde 4 2R§2)jR(4)a’Lbj 4 R’Eile(ﬁl)lkjl

Using 242 splitting, we get:

1

4 nf 4

Rt(zb)de = ,R’l()eZl Gaf Rt(zil)gj = E (R,a);b 6ij
ITym (VR)

RE;@: = _Rgm) Oim — 72 (0k10i5 — 0510ik)

Here Rl()izif and Rﬁ,ﬁ )™ are components of the Riemann
tensors of M) and MUD | respectively. Covariant deri-
vatives (R ), are calculated using metrics on M (0,
Finally, we have:

+(VR) + (VR)'] +

ad be+R () (22)

Exact expression for the (22) as a function of time
is quite long, so we do not show it here. As follows
from our analysis, (22) diverges while two conditions
are satisfied — when R(t) or N(t) become equal to zero.
From (12)-(16) we have that the first condition is fullfi-
lled when t; — oo. It means that point ¢ — oo is a
singularity of the black hole. Indeed, scale factor in
that point is equal to zero — R(t — o0) = 0. So there
is a gravitational collapse to the singularity in infini-
tely distant future for observer in the selected reference
frame. In other words, it is geometrically impossible to
build a two-dimensional sphere with non-zero radius
and volume in such space.

The second condition is fullfilled if ¢, satisfies the
following equation:

1
swgCg ~ S¢Swy |Cl| tanh (,6’1 + S¢Swy \Cl| t )

/ 1
C? - C’%anh( C? - 120 ) =0

(23)

Conclusion

As it was shown in the analysis above, homogeneous
field configuration in the 5D Kaluza-Klein model
represents charged black hole with the scalar field
inside, or the cosmological model, if event horizon is
absent. It follows from the time dependencies of the
conformal factor e=%®) (which are shown on fig. 1)
that such model describes gravitational collapse of a
homogeneous universe when C3 > 0 and sequential
inflation and collapse when Cs < 0.

Solution (12)-(16) contains integration constants
Cy7 and (5, which have the following physical
sense. If our field configuration has event horizon,
these constants are functions of the central mass,
electric and scalar charges of the black hole. Exact
view of these functions is a subject for further research.
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