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ABSTRACT. In this paper, we study fixed points of
N-point gravitational lenses. We use complex form of
lens mapping to study fixed points. Complex form has
an advantage over coordinate one because we can de-
scribe N-point gravitational lens by system of two equa-
tion in coordinate form and we can describe it by one
equation in complex form. We can easily transform the
equation, which describe N-point gravitational lens,
into polynomial equation that is convenient to use for
our research. In our work, we present lens mapping
as a linear combination of two mapping: complex an-
alytical and identity mapping. Analytical mapping is
specified by analytical function (deflection function).
We studied necessary and sufficient conditions for the
existence of deflection function and proved some the-
orems. Deflection function is analytical, rational, its
zeroes are fixed points of lens mapping and their num-
ber is from 1 to N-1, poles of deflection function are
coordinates of point masses, all poles are simple, the
residues at the poles are equal to the value of point
masses.

We used Gauss-Lucas theorem and proved that
all fixed points of lens mapping are in the convex
polygon. Vertices of the polygon consist of point
masses. We proved theorem that can be used to find
all fixed point of lens mapping. On the basis of the
above, we conclude that one-point gravitational lens
has no fixed points, 2-point lens has only 1 fixed
point, 3-point lens has 1 or 2 fixed points. Also we
present expressions to calculate fixed points in 2-point
and 3-point gravitational lenses. We present some
examples of parametrization of point masses and
distribution of fixed points for this parametrization.

Keywords: gravitational lensing: lens mapping, fixed
points, deflection function; complex analysis.

AHHOTAIIISA. B poGoti moC/iiKyoTcss HepyXoMi
Touku B N-TOYKOBHUX TpaBitarmifinnx minzax. Jmsa ix
JIOCJTPKEeHHsT OyJla BUKOPUCTAaHa KOMILIEKCHa (opma

JiH30BOrO Bimobpaxkenns. KowmrmrekcHa gopMma Mae
mepeBary HaJ, KOODIWHATHOIO: B KOODPAWHATHOMY
Burisifi N-TOUKOoBa TpaBiTalliiiHa JIiH3a OIMUCYETHCS
CUCTEMOIO 3 JIBYX PiBHSHB, a B KOMILIEKCHOMY BUTJISIITI
JIOCUTH OJIHOTO PIBHAHHS. e piBHAHHS JETKO
IEPETBOPUTHCS B TOJIHOMIaJIbHE, SKe 3py4YHe JIJId
B pobori minzoBe BimobpazkeHHst
NpEJICTABICHO Y  BUIVIsAAI  JHiHIHOT — KoMOiHartl
JBYX BijioOpakeHb: KOMILJIEKCHO-aHAJITUIHOTO 1
TOTOXKHOTO. Anajnitnune BinoOpaskeHHS — 3aJa€
dyukIisg BiaxuaeHHH. Mu BuBumim mHeoOximHi i
JoCTaTHI yMOBM icHyBaHHs (QYHKIN BiIXuaeHHsS
i JoBem JiesiKi TEOpeMH. QyHKITSA BiIXUIEHH:
aHAJITUYHA, pAaI[lOHAJIBHA, 11 HYJI € HEPYXOMUMH
TOYKAMHM JIIH30BOI'O BiJOOpaXKeHHsI, IX YUCJIO JIEXKUTh
B mpoMmikKy Bix 1 mo N-1, 11 mosfoca € KoopamHATAMEI
TOYKOBHUX Mac, BCI IOJIIOCA IIPOCTI, JIUIIKU B ITOJIFOCAX
piBHi BetmunHaM 6€3pO3MipHUX MacC B HUX.

Mu 3acrocysanu Tteopemy laycca-Jlioka i mgoBenu,
mo BCi HEPYXOMi TOYKM JIH30BOrO BiOOparKeHHS
HaJIeXKaTh MiHIMAJLHOMY BUILYKJIOMY OaraToKyTHUKY.
Bepmuramun MiHIMAJIBHOTO BUIIYKJIOIO OAraTOKyTHUKA
€ TOYKHU, B JIKAX 3HAXOIATHCS Oe3pO3MipHI TOYKOBI
macu. JloBenm TeopeMy, 3a JOIMOMOIOIO SIKOI MOXKHA
3HAMTH BCI HEPYXOMi TOYKM JIIH30BOI'O Bi0OparKeHHsI.
Ha mincraBi Bume oTpuMaHuxX pe3yJabTaTiB, MU
3po0MJIM  BHCHOBOK, IO B OJHOTOYKOBIH JriH3i
HEPYXOMHX TOYOK HEMAa€, B JIBYXTOYKOBIN JIH3I €
TiJIBKU OJJHA HEPYXOMa TOYKa, B TPBbOXTOYKOBIi JIiH3i
MoxKe OyTm onHa abo JBI Hepyxomi TOoUkHM. Takoxk
B pobOTi TpuBeIEHI BUPaXKEHHsI s OOYUCIEHHS
HEPYXOMHUX TOYOK B OJIHOTOYKOBIH 1 JIBYXTOYKOBIM
rpaBiTamiitaux Jin3ax. HaBemeni mesaxi mpukiamn
[MapaMeTPUYHOIO 3aBJIAHHS TOYKOBUX MAacC 1 PO3MOILITY
HEPYXOMUX TOYOK.

JTOCJIi >KEeHHSI.

KurouoBi ciioBa: rpasiTariiiine JIiH3yBaHHS: JIH30BE
BiTOOparkeHHst, HEPYXOMi TOUKH, PYHKITIS BiIXMICHHST;
KOMIIJIEKCHUI aHaJIi3.
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1. Introduction

Gravitational lensing is a phenomenon of deflection
of light ray in a gravity field (Bliokh&Minakov,1989;
Zakharov,1997;Schneider,1999).  With gravitational
lensing, star systems and planets in star systems can
be found. Recently, astronomers have observed a large
number of gravitational lenses. In addition to one-
point lenses, lenses with more than two components
were also detected. In this paper, we show that such
objects can have fixed points. In physical terms, fixed
point of gravitational lens is a point in a picture plane
that has such property: if we place source in fixed
point, one of images is in this point.

2. General information and formulation of
the problem

An N-point gravitational lens can be described
by means of the following equation (Zakharov,1997;
Schneider,1999):

-

j=i- Zmﬂ f :

-1,

(1)

where m,, are dimensionless masses whose position in
the plane of the lens is determined by the normalized
radius-vectors l,,. It is plain, that ) m, = 1.

We denote the set of radius-vectors Z:L as A =
{li]i = 1,2,..., N}. Vector equation (1) specifies single-
valued mapping

L: (RX\A) = RY, (2)

from vector space R% to vector space R3.

We introduce Cartesian coordinates, that transforms
R3% and R spaces into coordinate planes. Coordinate
planes R and R% are source plane and image plane
respectively. Source plane R?. and image plane R% are
often united and called picture plane in astrophysical
literature.

Mapping (2) can be described by system of equa-
tions:

— _ . X1 —0n
yl - ('T:l z::1 i (Il—an,)12+(12—b,,)2)

’ (3)

— ) —by,
y2 B (x2 a nz::I i (mlia"w)%ﬁ’(xZ*bn)Q)

where (an,b,) are coordinates of point C,, of radius-
vector 1, in plane R%.

Analytical research of (3) was in (Kotvyt-
skiy&Bronza&Vovk, 2016; Bronza&Kotvytskiy, 2017;
Kotvytskiy&Bronza&Shablenko, 2017), and quasian-
alytical method of image construction was offered in
(Kotvytskiy&Bronza, 2016).

A point of single-valued mapping L is fixed, if each
of point coordinates is invariant of L.

We need to substitute y; = x1 and ys = x5 and into
system of equations (3) and solve it to find fixed points.

N
J«l an
nzl i (z1— an) +(z2— bn) =0
N (4)
> m; 23 —bn =0

= @1—an) +(w2—bn)?

Mapping L is surjective. Inverse mapping

%(\A) )

is multivalued. If Ag - is a fixed point of single-valued
mapping L, then image of its image, when the mapping
is reversed, is not coincide with it, but includes it.

' (L (Ao)). (6)

of fixed points of

LR (R
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In this paper we study the set =
mapping L.

We set the mapping L in complex form for effective
application of mathematical tool.

3. Complexification of lens mapping L

Let define mapping (3) in complex form. We intro-
duce complex structure for R% and R} , that trans-
forms them into complex planes C, and C¢ respec-
tively.

We introduce new complex variables z and ¢ . Let

(7)

Rez =z, Imz =29,Re( = y1,Im{ = ys.

New variables related to old ones as

_ 2tz — ¢
{ o _ zzz and u CEE ’ (8)

275 Y2 =3

Now system (3) can be written as
al 1
(=z— Z My = ) (9)
_ - An
n=1

where 25:1 my, =1land A, = a,+ib,;n=1,2,...,N.
We introduce function w = ZN /T and call

it deflection function. Function is complex conJugated
to w and defined:

N
1
w= E My ————
el z— Ay

Functions w and w contain all the information about N-
point gravitational lens. Except that it is convenient
to use function w, rather than w, for application of
methods of geometric function theory.

1 M ==

(10)
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We have: Theorem 4.4. Deflection function w can be written
in form: 9 ()
C=z2z—-w((Z)=2z—w(2). (11) Qw = z 15
=Gt (15)
Or: N m
_ where z) = _(z— A",
(=7z—w(z). (12) Q)= Ilaaa | ) »
1 P (z
Thus, N-point lens can be described not only by the b)w (16)

system of equation (3) but also by the single equation

(9). Mapping (2) can be written as
L: ((Cx\A) — (Cy, (13)

mapping of complex plane Cx into complex plane Cy-.

We can obtain equation (12) in another way. We
can use equation (1) (Witt, 1990).

4. Some properties of ( =((z) and w =w(2).

Statement 4.1. Function ¢ = ¢ (2) is not an analytic
function.
Proof. Derivative of ( = ( (2)

o¢ 0
—=—(z2—-w((Z)=1-——#0
5% — 55 ¢ W) =%
is not identity equal zero, therefore ( is not analytic
function.

Statement 4.2. Deflection function w = w (z) is an
analytic function.

Proof. Derivative of w = w (2)
w0 [ 1 !
= (Smen) - X

is identity equal zero, therefore w in an analytic func-
tion.
Statement 4.5. Deflection function w = w (z) is:

A(z)
B(z)’

e rational function, i.e. w = where A (z) and

B (z) are polynomials;

e the denominator is a degree deg B (z) = N, the
numerator is a degree deg A (z) = N — 1;

e leading coefficients of A (z) and B (z) are equal 1.

Proof. We reduce the sum to common denominator

w =

N
(14)

1
My ——.
Z_An

n

Denominator of deflection function B(z) =
Hﬁ;l (z — A,) is a degree deg B (z) = N leading coef-
ficient equals 1. Numerator A (z) = Zf:le my 2N 14
is a degree deg A (z) = N — 1, leading coefficient of
A (2z) equals Zf:lzl my, = 1.

T degP(z) P(2)
where P (z) is polynomial;

N
Proof. a) w= Y mu,—— =
n=1 "

N
= Z (mn(% (hl (Z — An))) =

n=1

- é 4 (In(2— A,)"™) =

d X m 1 Q'(2)
— 4 (ML Ge-a0™)) = £ mQe) = G2
We note, that function @ (z) is not a polynomial.

Proof. b)w = g((j)) =4 (nQ(2) =

= % (hl (Hr]:]:1 (2 — A"

Assume without loss of generality, that numbers m,,
are rational.

Let m,, = Z—:, where p, and ¢, are natural numbers
and coprime integers.

We substitute that into equation and transform it.
Whence, we have:

_ d 1 N Bupy
w—% (hln (anl (z—Ay)m )),

where h = Hgil Gn. Let s, = z—"h. Numbers s,, are
natural numbers.
After transformation (17) we have:

w = dilz (}lllnP(z)) - diz (;11”2))

N
where P (z) = [] (z — A,)°" is polynomial. But then

n=1

(17)

1P

“wp 19

_11P (2
 hh P(2)’
As well, leading coefficients of A (z) and B (z) are equal
1 and leading coefficient of P’ (2) equal deg P (z). We
have: h = deg P (z), i.e. we have (16). QED.

Remark 1 (to theorem 4.4). Polynomials P (z) and

N

H (Z - An)a

n=1

~—

w

(19)

P’ (z) have the same roots as B(z) =

but with different multiplicity.
Remark 2 (to theorem 4.4). Then since function w
is complex conjugate to w, we obviously have:

(PR _ 1P _

o= (i) “ire - @
(PO 1P

~h P(z) hP(
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Function w, exactly as w, can be expressed in form of
ratio of two polynomials. Numerator of the ratio is a
derivative of denominator up to an unessential constant
multiplier.

Remark 8 (to theorem 4.4). Polynomials P (z) and

P’ (z) are not coprime. Fraction S;T(ZZ))

can be reduced.
Polynomials P (z) and P’ (z) are coprime, if and only
if m, = %,n =1,2,...,N.

Theorem 4.6. Poles of function w are A, points,
which are coordinates of masses. All poles are simple.
For any poles are always true: pole residue equal nor-
malized mass at that point. The sum of residues at
finite points into complex plane equal one. At infinity
equal minus one.

Proof. Obviously.

5. Fixed points of a lens mapping

Theorem 5.1.(About quantity) By ng denote a quan-
tity of a fixed points of mapping L : (Cx\A) — Cy,
thenng:1<nyg <N —1.

Proof. Fixed points of function ¢ = z — w (z) are
roots of equation z = z — W (z), i.e. W(z) = 0. We
have w (z) = 0, if we complex conjugate it.

Therefore, we have deg P’ (z) = N — 1 from the rep-
resentation (16). Hence, the number of zeroes of func-
tion w with regard to multiplicity is N —1. Polynomial
P’ (2) can have multiple zeroes. The number of differ-
ent zeroes of polynomial P’ (z) is from 1 to N — 1.

We have the theorem about distribution of a fixed
points of mapping L.

Theorem (main) 5.2. (About distribution) Fixed
points of mapping L are in the convex polygon that
consists of point masses.

Proof. We use Gauss-Lucas theorem: if P is a poly-
nomial with complex coefficients, all zeros of P’ belong
to the convex hull of the set of zeros of P.

By theorem 5.1, fixed points of mapping L are zeroes
of the function w. By theorem 4.5 we have representa-
tion (16).

N
Since P(z) = [] (z— 4,)°", roots of P’(z),are
1

in the convex polygon that consists of set
{A,}, because of Gauss-Lucas theorem (Pra-
solov,2014;Davydov,1964).

Theorem 5.3. (of finding fixed points and its num-
ber) Fixed points of mapping L for N > 2 are roots
of:

_ P(z2)
ged (P (2), P (2)

H (z) (21)
their number nyg = deg H (z), and estimation ng : 1 <
ng < N — 1 is achieved.

Proof. The polynomial P (z) is divided by the poly-
nomial ged (P (z), P’ (2)). Therefore B (z) is a polyno-
mial. Polynomial ged (P (2), P’ (z)) has only multiple

roots. Multiplicity of roots of ged (P (z), P’ (2)) is one
less then multiplicity of P (z). Hence all roots of poly-
nomial H (z) are different and ng = deg H (2).

2-point gravitational lens has one fixed point.

In general situation the number of fixed points is
ng = N —1.

For N > 2, we have only one fixed point, if and only
if all point masses are equal and located at the vortexes
of regular polygon.

Remark 4 (to theorem 5.3). Fixed points are missing
from point gravitational lens.

S

Figure 1: 3-point lens with m; =1 —s,m2 = 3,

5. A1 =142 =i, A3 = —i

ms3 =

-1.0

Figure 2: 3-point lens with m; = 1 — s,me =
0.495s,m3 = 0.505s, A1 =1, A =i, A3 = —i
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For 2-point lens we have deflection function

miq meo

Z—A1+Z—A2

w =

where A; and A, are coordinates of point masses and
mq + meo = 1.

With m; = s,ms =1 — s and s € [0, 1] we have
Zst = Al + (A2 — Al)s

For 3-point lens we have deflection function

mq + mo + ms
Z—Al Z—Ag Z—A3

w =

where Ay, Ay, A3 are coordinates of point masses and
mi + ms +mg = 1.
We have an equation for fixed points

Figure 3: 3-point lens with m; =1 —s,my = %,mg =
%7141 =1,A; =i, A3 =—1i 22 + Ay Asmq + A1 Asmeo + A1 Asms—
L - (A2m1 + A3m1 + A1m2 + A37TL2 + A1m3 + Agmg) z=0
10]-
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