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ABSTRACT. In the present paper, we study the

geometry of a mini-superspace and its relation to the
corresponding space-time geometry of a spherically
symmetric configuration of electromagnetic and grav-
itational fields, taking into account the cosmological
constant, and the construction of the wave function
of a quantum system. By the generalized Birkhoff
theorem, for this configuration we can introduce the
R- and T-regions, which simplifies the description of
the dynamical system. Proceeding from the standard
classical Einstein-Hilbert action, a Lagrangian of the
fields configuration is constructed for a spherically
symmetric space-time. The Lagrangian of the system
is degenerate and contains a non-dynamic degree of
freedom, which leads to a constraint. After eliminating
the constraints, we proceed to the description of the
dynamic system in the configuration space (minisu-
perspace). We consider additional conserved physical
quantities: the total mass and the charge of the sys-
tem. We note that the geometry of the minisuperspace
turns out to be conformally flat. In addition to the
standard horizons inherent in a charged black hole,
space-time has an additional cosmological horizon.
In the configuration space the simplest invariants of
the curvature tensor: the scalar curvature, the square
of the Ricci tensor, the Kretschmann invariant, are
vanish, while the components of the Ricci tensor and
the curvature tensor diverge on the minisuperspace
analogue of the cosmological horizon.
Within the framework of canonical quantum gravity
with material sources, physical states are found by
solving the Hamiltonian constraint in the operator
form for the wave function of the system defined on
the minisuperspace, taking into account conserved
additional quantities. Formal quantization in the
R-region can be regarded as an analytic continuation
of solutions from the T-region. In this approach,
taking into account the mass and charge operators
leads to a continuous spectra of mass and charge.

Keywords: charged black holes, cosmological
constant, mass and charge function, Hamiltonian
constraint, quantization, mass and charge operators.

AHOTAIIY. B gawiit poGori po3risigaeTbes 3a-
Jada BHBYEHHS reoMeTpil MiHicymneprpocTopy Ta Mo-
r'0 3B’gI30K 13 BiJMIOBiITHOI0 M€OMETPIEI0 IPOCTOPY-TIaCy
cepuaHO-CHMETPUIHOI KOHMIrypariii esreKTpomMarti-
THOTO Ta TPABITAIIITHOTO MOJIiB 3 YPaXyBaHHAM KOCMO-
JIOTI9HOI cTajol Ta moOym0Ba XBUJIHOBOI (DyHKINT Bis-
MOBiTHOT KBAHTOBOI CUCTEMHU. 3 y3arajlbHEHOI TeOpeMu
Bipkrodda Bunmmusae, mo 17159 TaHOI CHCTEMH MOXKHA,
susnauutu R- ta T-obsacri, mo cupomrye omnwuc ju-
HaMivHOI cuctemu. Buxomsdum 3i cTaHZapTHOI KJIACH-
qnoi ail Eitamrreiina-TinbbepTa, OyayeThcs JlarpaHKi-
an koHdiryparmil nosiB s chepuIHO-CHMETPUIHOTO
npocropy-dacy. Jlarpamkian cucTeMu € BHPOIKEHUM
Ta MICTUTb HEJIMHAMIYHY CTYHiHb BiJIBHOCTI IO IIPHU-
3BOANTEL J0 B’si3i. Bukmiouaroum B’s3h, MOXKHA Tepe-
WTH 10 OMKUCY AWHAMIYHOL CCTeMHU B KOHMITypaIiitHo-
My 1pocTopi (Mminicyneprpocropi). Posrispaiorses mo-
JaTKoBi izwuHi BemmauHu, 1o 36aepiraroTbes: MOBHA
Maca i 3apsa cucremu. Bigzaadnmo, 1m0 reomerpisa mi-
HICYIIepIIpPoOCTOpy € KOH(MOpMHO-ILTacKo. KpiMm cram-
JAPTHUX TOPU30HTIB, BJIACTUBUX 3APSAIKEHUM TOPHUM
JipaMm, TPOCTip-dac Ma€ AOJATKOBUU KOCMOJOTIYHMIT
ropusoHT. B KoudirypamniitHomy mpoctopi HafimpocTimnri
iHBapiaHTU TEH30pa KPUBUHH TaKi K CKaJIAPHA KPH-
BHUHA, KBaJpaT Tea3opa Pidi, inBapiant Kpeumana, mo-
PIBHIOIOTH HYJIIO, B TOW YaC K HEHYJIbOBI KOMIIOHEHTH
Ter3opa Pidi i TeH30pa KpuBuHN PO30IrarOTHCA HA AHA-
JIO31 KOCMOJIOTI9HOTO TOPHU30HTA.

B pamkax xaHOHIYHOI KBAHTOBOI T'paBiTariil 3 mMare-
pianbHUME [KepenaMu, (pizudHi cTaHM 3HAXOAATHCA
MMIJIIXOM PO3B’sI3aHHs TaMiJIbTOHOBOI B’st3i B omiepaTop-
Hilt opMi 11T XBUIBOBOI (DYHKINT CHCTEMU, BU3HAYE-
HOI Ha MiHICYTIepIpoCTOpi, 3 YpaxyBaHHAM JOTATKOBUX
BeUYnH, 10 30epiraroTbesa. PopMaabHe KBAHTYBAHHSA
B R-obnacri npu npoMy MOXKHA PO3IVIAAATH SK aHAJIII-
TUYHE IPO/IOBKEHHs po3B’sa3KiB i3 T-obmacri. B obpa-
HOMY TiIXO/i, BpaXyBaHHS OMEPATOPIB Macw i 3apsmy
MPU3BOIUTD IO HEMEPEPBHOTO CIIEKTPY MACH i 3apsy.
Kirro4uoBi cJjioBa: 3apsKeHi 4OpHi Aipu, KOCMOJIOLi-
9HA CTaja, MacoBa i 3apsitoBa GyHKIsI, ['amisibToHOBA
B’$13b, KBAHTYBAHHSI, OITEPATOPY MACH 1 3apsiy.
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1. Introduction

The study of the canonical formalism of general rel-
ativity shows that all dynamic information about the
gravitational field is contained in constraints. After
replacing momenta Pj; = 65/67;; they lead to the
Einstein-Hamilton-Jacobi equations (EHJ) for action
functional S:

08 68
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where Gy = (1/2) () Y2 (varvii + vavie — Yigye) is
supermetric of configuration space and conditions of
invariance (85/0v;5).; = 0.

When quantized, in accordance with the Dirac ap-
proach, constraints become conditions on the state vec-
tor (Dirac, 1979; Gitman, 1986). After replacement
f’ij = —4/67y;; momenta constraints leads to the rela-
tions of invariance of the state vector: (6/6v;;¥),; = 0.
In this case, the Hamiltonian constraint leads to the

Wheeler-DeWitt equation

00 ope gy =
{Gukl 57 v VIR } W) =0.
(See, for example, Schulz 2014 and references therein.)

We see that both classical and quantum aspects of
the behavior of a gravitational field are determined
by the metric of superspace so that superspace is an
arena of action classical and quantum geometrodynam-
ics. Studying the geometry of a general superspace,
one can obtain important information about the clas-
sical and quantum manifestations of the dynamical sys-
tem under consideration. However, the study of super-
space in general is faced with great mathematical dif-
ficulties. Therefore, reduced models are widely used,
among which spherically symmetric configurations are
popular and simplest models used to study the prob-
lems of quantum gravity.

The work is devoted to the study of the minisu-
perspace of spherically-symmetric configurations of
the electromagnetic and gravitational fields with a
cosmological constant and the search for a correspon-
dence between the space-time and minisuperspace
phenomena, and their quantization. Here we consider
the class of configurations with diagonal space-time
metrics. We are based on the observation that the
considered configurations that are stationary from the
point of view of the external observer, there are certain
regions of the space-time with dynamic behavior. This
means that in these regions there is an evolution of the
space-time geometry in time, which is responsible for
the quantum mechanical properties of the considered
black hole model (Nakamura, 1993; Gladush, 2016).

2. Classic description of CBH with A

The action for the gravitational and electromagnetic
fields with cosmological constant in space-time V) has

the form

1 3
S < (R 424
Stor — M( (R®+28) + (1)

K
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For a spherically symmetric configuration, the electro-
magnetic field tensor and the interval have the forms

Fro=Ay, —Auy = Fap = Apa — Aaps (2)

ds* = h (2% ) (dx0)2 — g (2°r)dr® — R?* (2%, r) do”,

(3)
where do? = df? + sin #da? is the angular part of the
metric; a, b = 0, 1. After integrating over the angles
and discarding the surface term, the action (1) can be
reduced to the form

3 RR
/W (;\/gh {1 + 771 (InRh), — AR? - (4)
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Here X o = 0X/92°, X 1 = 0X/0r denote the deriva-
tives with respect to z° and z'. Information on
the structure of space is contained in the quantity
(VR)” = g®’R ,R, (see Berezin, 2003). The surface
R (2% r) = R, = const for which (VR)® = 0 di-
vides V* into two T- and two R-regions. Moreover,
(VR)? > 0 in the T-region, and (VR)® < 0 in the R-
region. Using the generalized Birkhoff theorem, we can
choose a coordinate system in the R-region in which
h, g and R depend only on the spacelike coordinate
r. Similarly, in the T-region there exists a coordinate
system in which h, g and R depend only on the time-
like coordinate z°. Then the metrics in the R- and
T-regions take the form:

ds% = h(r) (dm0)2 —g(r)dr* — R*(r) do?,

S =

(5)
dsy = h (z°) (de)Q —g(2°) dr* — R? (2°) do?®. (6)
In this case, the action (4) is divided in the sum

S = Sgr+Sr, where Si and St are the actions defined

in the R and T regions respectively. The Lagrangians
corresponding to them have the form

xr A5 R

Lp = 7
R 2¢ /gh ¢
3
+ = /gh [1 —AR? + % (mm)i] :
A2 R2
Ly = 2RZLO 8)

2¢ gh
3
- XS h {1 AR % (ng)’O] .
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Here xr and x g - constants, obtained by integration
of the action over coordinate z° in R-region and co-
ordinate r in T-region. Since the Lagrangian is de-
fined up to a constant factor, we further assume that
Xr = X7 = 1 (meter).

It is convenient to introduce new variables in the R-
and T- regions:

¢r = —Ao, §r = —Rh, Nr =+gh,
¢T:A17 ST:Rga NT:\/gih (9)

In these variables, the Lagrangians (7) and (8) take a

uniform form:
R .U,
N2 '

where s = ¢3/k, a - is the evolutionary parameter,
which in each of the regions takes the form o = 29 =
ct or o = 7 respectively. From the Lagrange-Euler
equation for variable N in (10) it follows that OL/ON =
0. It means that N is Lagrange multiplier and there is
the constraint applied to system:

F2R

L =
2cN

(1 — AR? + (10)
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Expressing N from (11) and substituting it in (10), we
obtain new Lagrangian and action of the system:

+ (1 — AR? + (11)

L= 5\/(1 — AR?)(—R €0 + iizaﬁ?a), (12)
S = s/ \/(1 — AR?)(—dRd¢ + f—jd&). (13)

Thus, the action (13) for the system is an action for
geodesic in a minisuperspace with a metric

2
dQ® = (1 — AR?)(—dRd¢ + %dqs?). (14)
It appears that minisuperspace is conformally flat,
which leads to the fact, that the scalar curvature, the
square of the Ricci tensor, the Kretschmann invariant,
are vanish, while the components of the Ricci tensor
and the curvature tensor diverge on the minisuperspace
analogue of the cosmological horizon (¢t +x = 1/v/A).
This can be seen by following transition to new vari-
ables:

2
e=%(er-2-25), (15)
R=cr +x, o= #
In these variables metric (14) takes form:
dQ? = (1 — Aler + 2))(—c2dr?® — dz? — dy?).  (16)

Introducing generalized momenta as P; = 6‘97% where

L is lagrangian (10), we define Hamiltonian of the sys-
tem:

H=PQ,-L=
N (—APrP: + 5P, — s*(1 — AR?)) =

(17)
oL
~N35§-
Thus, we obtain Hamilton constraint: H = 0. There-
fore, for further consideration, it’s expediently to in-
troduce additional physical quantities - the mass and
charge of the system. In the classical case, the charge is
determined by the charge function as follows (Gladush,
2017):
R2
Q=
Vgh
The total mass of the configuration has the form
(Gladush, 2012):

A R% R?
M:8R<1_R2+ ;0_ 71>+
c 3 g

Q2
2¢2R’

. (19)

In new variables these functions have following form:

AN

Q=cPy, M= % (R - (20)

In order to obtain classical solution, we substitute fol-
lowing relations in Hamilton constraint (17) and mass
and charge functions:

aS oS aS
A an’ Pd) = 3.
0¢ OR 0¢
This leads to the Einstein-Hamilton-Jacobi equation
and equations for total mass and charge of the system:

P = P = (21)

2
49808 + 55 (%) +s%(1— AR?) =0,

<R AR+ %5 (32) )—m. (23)

This equations have following solution:

q 52 A q>

B cqb—i—pgf 4pe <R 3R +2 R)
Here it is taken into account that from the canoni-
cal equations for momenta P and Py it follows, that
they are integrals of motion. In particular, cPy = ¢
- charge of the system. Calculating derivatives 9.5/9q
and 05/0pe and equating them to constant, we find
trajectories:

(22)

aS s
Coe — & 3¢

(24)

s? A 2

= R—- R+ — = 25

$=b- 4( 3 +2R>¢ chfR()

From mass function we find out that pe = ’;ESOC. Fi-

nally, we get:

_ A g > _ séo ¢
5—50< om C<R‘3R +R)> =\ md R

(26)
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Performing reverse transformation to (9), we obtain []W’Q} =0, [H7Q} =0, [H,]W} =~ H~O0.

following metric coefficients: sc 0¢ (31)

2mcé 2me ¢ A 4
hp = D80 (p  ZMe 2R, (2
n s ( SR el 3  (27)
N2 N?
gr = Ja hT - 7T7
hr gr
2mcéo 2me ¢ A 4
= 1— _a
9T s ( SR seR? 3 R

Assuming Np = Ny = 1,&y = s/2mc, we obtain classi-
cal result for ReissnersH“NordstromshH“de Sitter met-
rics. Solution (26) can be written in terms of minisu-
perspace variables (¢, z,y) in parametric form:

CT:%((l*%ﬂ)Rﬁ*CLﬁ*Rag%RS), (28)
x:%((l—FRi)R—a—RL%R?’),
y= 1/
Here a = scfy, Ry = 2mc/s. The curves that are
described by (28) are third-order curves.  Their

intersection with the light cone in the minisuperspace
correspond to the event horizons in space-time,
while the interior of the cone corresponds to the
T-regions. Further, after second intersection with
a conus, they move outside the light cone of the
miniscuperspace, which corresponds to the spatial
evolution of fields in the outer R-region. Then they
are returning again to the T-region. For extremal and
superextremal charged black holes, the corresponding
curves are tangent to or pass by the cone, respec-
tively. All this points us to the connection between
the geometry of the minisuperspace and the geome-
try of spherically-symmetric space-time configurations.

3. Quantum description of CBH with A

In order to build quantum description of the sys-
tem, we proceed form functions of physical quantities
to their operators. Defining coordinates and momenta
operators as

9
oq'’

7 ~

we obtain following Hamilton, mass and charge opera-
tors:

1= 2 (402525 + 155 25 + 5°(1 = AR2) ) ,(30)
s A p3 ) R 9°
P(R-SR -G Seh) - fnde

Q = fihca%.

M

In order for the total mass operator to be Hermitian,
we use the following ordering of the operators: pe&pe.
Obtained operators have following commutators:

By (31) we can require that the wave function of the
system satisfy following system of equations:

HU =0,
MU =mU, (32)
QU = qU.

Jointly solving (32), we obtain wave function of the
system, which is regular on horizons:

_ 2mc q? A
W(E, R, ¢) = C <\/£R [_1 pame_ 4y 3R3D |

Since system (32) has a solution for any values of m
and ¢, the mass and the charge spectra of black hole
are continuous.

4. Conclusion

Obtained result is consistent with the previous
result of one of the authors (Gladush, 2016; Gladush,
2017) and turns into it at A = 0. Counsidered approach
leads to continuous spectra of mass and charge, what is
coincides with results of other authors (Kuchar, 1994;
Louko, 1996; Nakamura, 1993). Also quantization
was carried out in uniform way, for R- and T-regions
simultaneously. Since quantization has physical
sense only in T-regions, the results obtained for the
R-regions can be considered an analytical continuation
of the T-regions solutions. Without the imposition of
additional differential-geometric and group structures
on the space-time, configuration or phase spaces, it is
impossible to obtain a discrete spectrum. The reason
for this is that the above differential equations deter-
mine only the local structure of the space, whereas
the global structure needs to be defined. Thus, the
question of the mass and charge spectra is not solved
by a local approach, since the properties of the spectra
depend on the global properties of the space-time and
minisuperspace geometry, and the structure of the
phase space of the considered system.
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