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ABSTRACT. We study some classical and quantum
aspects of the configuration space for a spherically-
symmetric (SS) system of gravitational and electro-
magnetic fields. Note that this fields configurations,
which are stationary respect to external observer, have
regions of space-time (S-T) with dynamic behavior.
This means that in these regions there exists an
evolution of the S-T geometry in time, which is
responsible for both classical and quantum mechanical
properties of the model. From the standard action,
we construct the reduced action and conserved total
mass and charge. In view of a Hamiltonian constraint
the non-dynamic degree of freedom from the action
is excluded. This leads to the action in the minisu-
perspace. Therefore, the classical investigation stage
of the Einstein equations solutions reduces to the
study of solutions of the Einstein-Hamilton-Jacobi
equation in the minisuperspace. It turns out that
minisuperspace is flat therefore solutions of the
Einstein equations correspond to a pencil of lines in
the minisuperspace. Their intersections with the light
cone of the minisuperspace correspond to the event
horizons in the S-T of the charged BH. The consider-
ation of the quantum aspects is formally reduced to
the quantization of a particle in a three-dimensional
pseudo-Euclidean space.  Using the compatibility
condition of the DeWitt and the eigenvalue equations
for the operators of mass and charge the configuration
wave function is constructed. Thus, we obtain a model
of a charged BH with a continuous spectrum of masses
and charge.

Keywords: spherical-symmetric  configurations,
minisuperspace, Hamilton operator, mass and charge
operators, compatibility condition

ABCTPAKT. JlocmimKyrOThcss ekl  KIACHYHi
i  KBaHTOBI ACHEeKTHU dizukn i reomerpii
MIHICYTIepIIpocTopy ChepUIHO-CUMETPUIHOI CHCTEMHI
rpaBiTamniffHOro  Ta  €JEeKTPOMArHiTHOrO  IIOJIiB.
Bimgmaammo, 1m0 Taki kgacuuHi  KOHMIryparii,
AKi € CTaIliOHApDHUMH 3 TOYKH 30Dy 3O0BHINTHBOTO

crocTepiratda, MaiTh MEeBHI 00JacTi IPOCTOpy-dacy
(TTY9) 3 auuamivanm moseninkoo (T-obmacri).  Ile
O3HAYAE, IO B IIUX 00JIACTIX ICHYE €BOJIOIIA reOMeTpil
IIY B waci, gka BignoBimae, K 3a KJIACU4HI, Tak
i 3a KBAHTOBO-MEXaHidHI BJIACTUBOCTI MOIEJI. 3i
cragmapTHOol mii  OyayeTbcs [id  Ajs  3a3HadeHOl
cucremu mosiB B T-obsacTi, BBOAATLCS IOBHA MAaca
i 3apsanm cucremu, ski 30epiraroTbesi.  3a JOTOMOTY
raMiJIbTOHOBOI B’s3i, 3 OTPUMAHOI CKOPOYEHOI il

BUKJIIOYAETHCA  HEJAWHAMIYHA  CTYIiHb  BiJIBHOCTI.
Ile npwm3BomuTe g0 mii B KoHDIryparifinomy
upocropi (minicynepupocropi).  Buaasierbcs, 1o

PIBHSIHHSA TEOMEe3WYHUX B MiHICYNEepIPOCTOpi pasoM
3 B’S3310 EeKBIBAJIGHTHI piBHAHHAM EifHmITeiiHa,.
Tomy, kacuuHWil eTam  JOCTIIKEHHS  PillleHHs
piBusnb Eitamreiina 3BOAWTHCS A0  OCTIIXKEHHA

PO3B’sA3KiB PiBHSIHHS Eitamreiina-Lavinbrona-
Axobi B MiHICYTIEPTIPOCTOPI. Buasagerbesa, 1o
MIHICYyIEPIPOCTOP € TJIOCKUM, TOMY PO3B’si3KaM

piBusanb Eiftmmreitna BiANOBiae MydOK MNpPIMHUX B
MiHICYIEpIpPOCTOpi. IX meperwH 3i CBIT/IOBUM KOHYCOM
MiHICYIIEPIIPOCTOPY BIANIOBLIAIOTH TOPU30HTAM TTOIH
B IIY zapamkenoi Y. Tlepermn mmx mnpsaMux
y MOy4YKy BiANOBimae IEHTPAJBHI CHHTYJIAPHOCTI
ITY. Pozrasyg  KBaHTOBUX — acleKTiB  CHUCTEMU
dopMaNTbHO 3BOOUTHCA 1O KBAHTYBAHHA BiIBLHOI
YAaCTUHKU B  TPUBUMIPHOMY  IICEBJ/IOEBKJILJOBOMY
MiHiCyIIepIIpoCTOPi. BukopucroByiodun  yMOBYy
cymicHocTi piBHsiHb JleBiTTa i mpobseMu Ha BaACHI
3HaYeHHs KBAHTOBHUX OIMEpATOPIB Mach 1 3apsamy,
OyayeThCs XBUIbOBA DYHKIISA CHEPUIHO-CUMETPUIHOT
KoH(DIryparii rpaBiTamifiHoro i eJeKTPOMAarHiTHOTO
TOJIiB. TakuM 4YUHOM, MH OTPUMYEMO MOJIEID
3apsIZKEHOT YOPHOI Tipw i3 Oe3MepepBHUM CIEKTPOM
Mac i 3apany.

Kimrouosi cJIoBa: chepUIHO-CHMEeTPHUTHI
KoH(DIryparii, KoudirypamiiiHmii MIpocTip, omepaTrop
laminbrona, omeparopm wMacu 1 3apsmy, yMOBa
CyMiCHOCTI
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1. Introduction

It is known that the classical and quantum aspects
of the behavior of the gravitational field is determined
by a superspace metric so that superspace is the ac-
tion arena of classical and quantum geometrodynamics.
By studying the superspace geometry we can obtain
important information about the classical and quan-
tum manifestations of the dynamical system under con-
sideration. However, the study of superspace in the
general case meets with insurmountable mathemati-
cal difficulties (Anderson 2015, Giulini 2009). There-
fore, reduced models are widely used, among which
spherically symmetric (SS) configurations are popular
and simplest models used for studying the problems of
quantum gravity in a simpler setting. The general ge-
ometrodynamics approach to studying of the SS grav-
itational field of the black hole (BH) was developed in
work of Kuchaf 1994, the case of the electromagnetic
and gravitational fields configuration of the charged
BH, was considered by Louko et al. 1996 and Naka-
mura et al. 1993.

The present work is devoted to studying of the min-
isuperspace of the electromagnetic and gravitational
fields SS configurations and the search for a correspon-
dence between space-time and the minisuperspace,
with the subsequent transition to quantization. We
consider the class of SS configurations with diagonal S-
T metrics. The model is based on the observation that
the classical SS configurations of the electromagnetic
and gravitational fields, which are stationary from the
point of view of an external observer, have certain
S-T regions (T-regions) with dynamic behavior. This
means that in these regions there is an evolution of
the S-T geometry over time, which is responsible for
the quantum mechanical properties of the considered
charged BH model.

2. Classical description of the spherically-
symmetric configuration of the gravitational
and electromagnetic fields

Consider the SS space-time M4 with the metric
ds® = Judatdr” = Yapdxtda® — R?do? . (1)

Here do? = df* + sin?0da®, R = R(z%), Yo =
Yab(2*) — 2D metric tensor, \/—g = /—yR?sin 6, rae
g =det g ], v = det |yap|, v =0,1,2,3; a,b=0,1.
The action for a system of gravitational and electro-
magnetic fields has the form

1 ct
5= _167rc/ (/{

where (YR is the scalar curvature, F,, = A, . — A,
is the electromagnetic field tensor, A, = {A,,0,0} is
vector potential.

@R + F‘“’FW> V—gdtz, (2)

Note that information about the structure of SS
space is contained in the square of the gradient (see
Berezin 2003)

®3)

The surfaces R(r,z2%) = const, for which (VR)? = 0,
divide M™ into

(VR)> =7"R R

R-regions M}(;) c M®, when((VR)? <0 and
T-regions Mj(fl) c M¥, when((VR)? > 0.

In the R-region the surface R(r,z°) = const are time-
like, and in the T-region is spacelike. Using the gener-
alized Birkhoff theorem, in the R-region we can choose
a coordinate system in which v,, and R depend only on
the space-like coordinate r. Similarly, in the T-region,
there exists an system in which 7,4, and R depend on
the time-like coordinate x°.

In work of Gladush (2017) it is shown that the metric
(1) and action (2) in the T-region can be presented in
the form

ds2 = h=Y(Ndx")? — h(dx')? — R?do?

— Re~ (Nda)® — ER~1(dz")? — R%do?.  (4)

I (£ &
= | Lrde® = | -0 Z 4+ 2N 0
ST / Tdm / 2% {N + H }dl‘ s (5)

where Ly is the Lagrange function of the reduced sys-
tem with a kinetic term

4

c
T= _Eg,OR,O + R%¢0°. (6)
Here Ry = OR/02° &o = 0¢/02°. In the R-region,
the action Sk has a similar form, the evolutionary co-
ordinate ¥ is space-like here.

From the Lagrangian Lr the primary constraint
Py = 9L/ON =0 and momenta P; = 0L/0q* follow:

Al Al l .
— Pp=——— P,=—R?%.
R aane o= yfte- (@)

From the Lagrange-Euler equation we obtain the sec-
ondary constraint

oL L l 4

0Ly _OLr _ L [ % <1 _ .
ON ON  2c K

So the Hamiltonian function H = Pgé—i—PRR—k P¢¢3—L

leads to the Hamiltonian constraint in the T-region

Nec 4k 1
H="" {_&ngR + ﬁpj —,f} ~0, (9)

where 1 = cl/\/k.
In addition the system has the following conserved
values:
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Charge function is equal to the charge inside the region
of radius R

R? c
QN R,¢0) = ~=do=7Fs. (10)
N l
Total mass function taking into account the contribu-

tion of the electromagnetic field is (see Gladush 2017)

2 2

Mtot = iR (]. + "YabRﬂ,R,b) + ﬁ 9

o (11)

In the considered variables, as well as through mo-
menta, it has the form

1 . R3q'52
R+<£R2+”64 )] (12)

2

T %

N2

1 [i2c? 4k 1
Mt = = | — R+ —EP2 + < P3| . 13
tot 212{,{ +c4£5+R4 (13)
We also write out the Poisson brackets of dynamic
quantities:

2K

{Ha Mtot} = 12c4

PcH ~0,

3. The configuration space of the SS system
of gravitational and electromagnet fields and
its geometry

The factor N can be excluded from the action (5),
while the original variational principle is transformed
into a variational principle in the configuration space.
Indeed, (8) implies N = vxT/c?. Substituting this
expression into (5) we get

Sm:/qude:u/\/‘fde:,u/dQ, (14)

where

4
c

dQ? = T(da)? = ——d¢dR + R*d¢* > 0 (15)
K

is the metric minisuperspace R. We see that Sg is the

action for a geodesic in the configuration space. The

geodesic equations derived from this, together with the

equation for N, are equivalent to the original Einstein

equations. Definitions of the momenta (7) can now be

rewritten in the standard form

dg®

P, = ,U/Qabi

daQ’ (16)

as momenta of the particle with mass p and 3-velocity
dq®/dQY = {d¢/dQ, dR/dQY, d¢/d2}, moving along the
geodesic in a minisuperspace.

{H,Q} = {Mo1,Q} = 0.

It turns out that the minisuperspace with the metric
(15) is flat. Therefore, there are transformations of
field functions, for example,

2
_ e Y
5—64 <c7' T c7'+:c> , (17)
¢ = Y , R=cr+ux,
cT+x
leading metrics (15) to Lorentz form
d0? = —c2dr? + da® + dy?. (18)

Substituting P: = 05/0¢, Pr = 0S/0R, Py = 0S/0¢
into the Hamiltonian constraint (9), we arrive at the
Einstein-Hamilton-Jacobi (EHJ) equation

40505 1 (0S\T_ P o
A 9¢OR  R2\0¢) Kk
His solution is
l 1268 [ kQ?
S = ECM + P& — 74/€2P5 <C4R + R) . (20)

We define the BH mass by the equation M,y = m.

Then
Pe= £l |
¢ ¢ 2I<E€0

As a result, the trajectories equations in the minisu-
perspace take the form

(21)

o) =\ 2L 1) = e TP(Tm, ),
26m T’ 2km T
(22)
where in the T-region R = ¢T" and
26m  KQ?
Fr(T,m,Q)=—-1+ ST o (23)
For the metric function in (4) we find
C2£Q CQ&O
= Fr(T, =— F
h 2%m T( , M, q) ) h By R(R7 m, q) (24)
for the T- and R-regions, respectively, and
Fr(R,m,q) = —Fr(T = R/c,m,q). These ex-

pressions lead to standard representations of the
Reissner-Nordstrom metric. in the T- and R-regions.
Consider the trajectories structure in the configura-
tion space. The region of admissible motions corre-
sponding to a solution in a T-region is determined by
the conditions £ > 0, R > 0 or
=P 22—y >0, R=cr+z>0, (25)
which correspond to the upper interior of the cone
0? = 0 in coordinates {c7,z,y} (see fig. 1). In these
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Figure 1: Mini-superspace SS configuration of grav-
itational and electromagnetic fields in coordinates

{er, z,y}.

coordinates, solutions (22) are described by straight
lines:

CT(R)Z%{(l—%g)R+G}>
.’L‘(R):%[(1+RLQ)R*G},

y= %Q7 RgZZHm azfoc

c2 K

(26)

4

The evolution of the system in configuration
space, for given M and (@, can be represented
as motion along a straight of the family (26),
starting outside the cone Q2 = 0 on the line
cr(0) = a/2,2(0) = —a/2,y = /& /RyQ, (central
singularity). Further, the straight intersects the cone
0? = 0 with R = R; (inner horizon), comes upon
inside the cone, crosses it with R = Ry (outer horizon)
and leaves to infinity of the minisuperspace. The
motion inside the cone Q2 = 0 of the minisuperspace
corresponds to the solution for the T-region of the
S-T, to the motion outside the cone corresponds to
the solution for the R-regions of the S-T (see Fig.
1). For an extremely charged BH, when |Q| = m+/k,
the corresponding straight of the family (26) touches
the cone Q2 = 0 at the point R = Ry = mk. For
superextremal charges |Q| > my/k these straights lie
outside the cone Q2 = 0.

4. Quantization of a spherically symmetric
configuration of the gravitational and electro-
magnetic fields

The quantum states of the field configuration un-
der consideration are determined by the wave function
U(R, &, ¢) on the minisuperspace with the coordinates
{R, &, ¢}. The corresponding momentum operators in
this representation have the form:

- 0]
P, = —ih—.

@ ¢ o
The classical Hamiltonian, the total mass and charge
functions lead to operators

— a2

. o
P——inZ
orR' ¢

5 (27)

N Nc (4rh? 02 r? 9? 22
H‘m{&wag_mw?_}’ (28)
. 1 (122 4kh% 0 .0  h% 02

M=3z (nR 75&555 B RW) (29)
A C - ch 0

For the Hermitian operator of the total mass, in the
configuration space we use the following ordering of
the operators: ngﬁg. The following commutation re-
lations hold

PSRN 2kh% 0 . PN A s

HN| =~ 2 ~0, [7,Q] = [Q.11] =o0.
[ 12¢* 0¢ @ @
States with a certain total mass and charge correspond
to eigenfunctions and eigenvalues of the operators of

total mass and charge:

MY, =m%¥,,, QU,=q¥,. (31)
They reduce to the following equations
c2l? 4kh? 0 .0  h% O?
— R-——— = — — VU, =22m7,,.
{ K o 0t e R8¢2} "
(32)
0 iql
—VU,=—VU,.
a¢ q ch q (33)

From the last equation we obtain W, = Ae!dl/cno,
The general wave functions of the DeWitt equation
HU =0 and the charge operator, also as general wave
functions of the operators total mass and charge, can
be represented in the form

U =) (&R) VMo G — 4 (&, R) NI/ M

The functions ¥ and 1, satisfy the equations
40? .
OROE
P a0 0 g
K ct 96706 R 2
Using the compatibility condition for the DeWitt and

eigenvalues equations for the mass operator, we con-
struct a regular solution of this system on the horizon,

02q212 1 6612
Kkh? RQ) v = /{27121/}’

} Ym = 2ml2wm .
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which leads to a wave function of a configuration in a
state with given mass m and charge ¢ for a T-region:

l )
\113;,7(1 =CJy <ZQCT hFT(T,m, q)) el(ql/ch)¢ , (34)
pl

where Jj is the Bessel function of the first kind of zero
order. The functions Fr(T,m,q) > 0is defined in (23).
Note that h and T are positive independent values here.
For the classical Reissner-Nordstrom solution, the vari-
ables h and R = ¢T enter the initial metric (4), at that
in the T-region, the value of h depends on T, according
o (24). We note that for the metric mini-superspace
(15), signature conditions are not violated in both the
T- and R-regions of the S-T. At that the evolution
of the system in configuration space in all cases oc-
curs within the direction d2*> > 0. Therefore quan-
tum equations constructed in a minisuperspace are per-
formed independently of the type of the region of the
S-T. Thus, the wave function of the system in the R-
region has the form similar (34) and can be written out
by formally replacing hFp(T,m,q) - —hFr(R,m,q):

l )
\Ili’q = OJO <I2R —hFR(R’ m, q)> el((ll/ch)¢ ) (35)
pl

Here R > 0 and h < 0. Since Fr(R,m,q) > 0,
then the value under the radical is positive. In
the classical case, the value of h is determined by
the value of R through the function Fgr(R,m,q),
according to (24). The wave function (35) can be
formally obtained based on the metric (4) and the
Lagrangian of the configuration Ly in the R-region,
where the evolutionary parameter 20 is spacelike.
Therefore, the solution (35) can be considered an
analytic continuation of the solution (34) through the
horizons Fr(R,m,q) = Fr(T,m,q) = 0. Note that
the coefficient N is not included in the wave func-
tion W, q(h,T,¢), which determines the probability
amplitude of the configuration {h,T,®;m,q}, that
is, the points {h,T, ¢} of a minisuperspace, for given
observables m, q. The mass and charge spectra of the
BH in this approach are continuous.

4. Discussion and conclusions

As it has been shown, the configuration space of the
SS system of electromagnetic and gravitational fields
is flat, therefore to solutions of the Einstein equations
there correspond straight lines in minisuperspace with
the metrics(18). This greatly simplifies the differential-
geometric structure of EHJ equations solutions. In ad-
dition, metric functions can be expressed in terms of
the natural invariant parameter corresponding to the
geodesic in the minisuperspace. As a result, classical
solutions for S-T metrics can be constructed without
fixing the calibration, for an arbitrary lapse function.

We note also that the used differential equations
determines only the local structure of the space, while
the global structure needs to be redefine. Thus, the
question of the mass spectrum is not solved at local
approach, since the nature of the spectrum depends
on the global properties of the geometry of the S-T
and superspace, their structure as a whole, as well
as the structure of the phase space of the system.
Therefore, to obtain a discrete spectrum, additional
differential-geometric and algebraic (group) structures
are introduced on the space-time, configuration or
phase spaces (see, for example, Barvinsky et al. 2001,
Das et al. 2003 and references therein). As a rule, a
discrete spectrum occurs in the presence of a potential
well or compact geometry of the configuration or
phase space leading to the finite motions.
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