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ABSTRACT. Within the microscopic theory the
ground state energy of spatially homogeneous degener-
ate relativistic subsystem of electrons in the field of sta-
tionary nuclei of l-th sorts with charges z1, . . . , zl was
calculated. In the two- and three-particle electron cor-
relations approximation the contributions of Coulomb
interactions to the equation of model state at low tem-
peratures was analyzed.
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1. Introduction

The theory of internal structure of cold dwarfs was
developed by S. Chandrasekhar in the 40-th years of
the XX century, and it was based on the equation
of state of ideal relativistic electron gas at T = 0K
[1, 2]. Generalization of this theory followed in the
next decades, when in the works of many authors were
investigated effects of such important factors as ax-
ial rotation [3, 4], Coulomb interactions [5], incom-
plete degeneration of electron subsystem [6, 7], effects
of magnetic fields [8, 9], effects of general relativity
[4, 10], processes of neutronization [11], etc. Interpre-
tation of all the diversity of dwarfs properties obtained
from the observations of space observatories [12, 13] re-
quires constructing a general theory, which also takes
into account the effects of these factors, among which
are competing.

The effect of the interactions which play an impor-
tant role in determining the structure of dwarfs at dif-
ferent masses and luminosities, and especially for the
case of massive cold dwarfs is least studied. Basing on
Wigner-Seitz, Thomas-Fermi approximations and non-
relativistic random phase approximation correspond-
ing to the approximate accounting of two-particle elec-
tron correlations, E. Salpeter [5] showed, that Coulomb
interactions lead to a small decrease of pressure of ideal
degenerate relativistic electron gas at T = 0K, what is
still considered as the basis of S. Chandasekhar’s the-

ory [9].

Due to the high density (∼ 105 g/cm
3
) a matter in

the internal ranges of degenerate dwarfs has the metal
electron structure with completely collectivized elec-
trons, and the Fermi momentum is of the order m0c.
Therefore the electron subsystem is weakly non-ideal,
allowing to use the perturbation theory with regard
to interactions. We have used the reference system
approach, which is renormalized perturbation theory,
formulated in terms of the n-particle correlation func-
tions of the ideal as well as the interacting relativistic
electron gas [14, 15].

2. The general relations

We consider a spatially homogeneous in the macro-
scopic sense electrically neutral model, which consists
of Ne electrons and nuclei of l-th sorts (N1 nuclei of
charge z1, . . . , Nl nuclei of charge zl) in the volume V
in thermodynamic limit Ne, V → ∞, Ne/V = const
at the temperatures much lower than the temperature
of the electron subsystem degeneration. The Hamilto-
nian of this model is

Ĥ = Ĥ0 + V̂ee +

l
∑

i=1

V̂ i
en + V̂nn, (1)

in which

Ĥ0 =
∑

k,s

Ek a
+
k,sak,s (2)

is the Hamiltonian of free electrons (Ek = {(m0c
2)2 +

h̄2k2c2}1/2 −m0c
2),

V̂ee = (2V )−1
∑

q 6=0

Vq

∑

k1,s1

∑

k2,s2

×

× a+k1+q,s1
a+k2−q,s2

ak2,s2ak1,s1

(3)

is the operator of electron interactions,

V̂ i
en = −V −1zi

∑

q 6=0

Vq S
(i)
−q ρ̂q, ρ̂q =

∑

k,s

a+k+q,sak,s (4)
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is the operator of electron interactions with i-th nuclear
subsystem,

V̂nn = (2V )−1
∑

q 6=0

Vq

l
∑

i,j=1

zizj{S(i)
q S

(j)
−q −Niδi,j} (5)

is the sum of direct nuclear interactions. Here

Vq = 4πe2/q2, S
(i)
q =

Ni
∑

j=1

exp [i(q,Ri
j)] is the structure

factor of i-th nuclear subsystem, a+k,s, ak,s is the genera-
tion and destruction operators of electrons in quantum
states with the given vector k and the spin orienta-
tion s, Ri

j is the radius-vector of j-th nucleus with the
charge zi.

We have used the subsystem of free relativistic elec-
trons as the basis for calculating energetic and struc-
ture characteristics of model of interacting degenerate
relativistic electron gas. In its turn the interacting
electron gas is the basis system for consideration the
electron-nuclear interactions. Energy of model with
the Hamiltonian (1) is represented as the expansion by
the correlation functions of model of interacting elec-
tron gas, that is:

E = Ee +
1

2V

∑

q 6=0

Vq

l
∑

i,j=1

zizj{S(i)
q S

(j)
−q −Niδi,j}−

−
∑

n≥2

{n!V n}−1
l

∑

i1,i2,··· ,in=1

zi1zi2 · · · zin×

×
∑

q1,q1,··· ,qn 6=0

Vq1 · · ·VqnS
(i1)
−q1

· · ·S(in)
−qn

×

× δq1+···+qn,0 µ̃n(q1 · · ·qn|0).

(6)

Here Ee is the ground state energy of basis system of
interacting relativistic electron gas, and µ̃n(q1 · · ·qn|0)
is the static limits of n-particle correlation functions of
model of interacting electron gas. The modern theory
of n-particle statics and dynamics correlation functions
of the non-relativistic electron gas is developed in the
work [14, 15] and based on the basis approach. One
version of this approach is the so-called post RPA, in
which the polarization operator is represented as

M2(q,−q|0) =µ̃0
2(q,−q|0)

[

1 +
Vq

V
×

× µ̃0
2(q,−q|0)G(q)

]

,

(7)

where G(q) is the static local field correction function.

This approach can be applied not only for weak non-
ideal systems, but also for the systems with intermedi-
ate non-ideality [15]. In this approach

µ2(q,−q|0) = M2(q,−q|0)
[

1 +
Vq

V
M2(q,−q|0)

]−1

. (8)

Taking into account that the model we consider is non-
ideal, for three-particle function we use the approxima-
tion RPA, in which

µ3(q1,q2,q3|0) = µ̃0
3(q1,q2,q3|0)

3
∏

i=1

ε−1
RPA(qi),

εRPA(q) = 1 +
Vq

V
µ̃0
2(q,−q|0).

(9)

The functions µ̃n(q1 · · ·qn|0) are the partial case of
dynamic correlation functions µ̃n(q1 · · ·qn|ν1, · · · , νn),
which are the spectral representation of n-particle
correlation functions, given in the coordinate space.
For example, the binary distribution electron function
F2(r) is connected with the function µ̃2(q,−q|ν,−ν)
by expression

F2(r) =1 + [βNe(Ne − 1)]−1
∑

ν

∑

q 6=0

×

× µ̃2(q,−q|ν,−ν) exp [i(q, r)].

(10)

where ν = 2πnβ−1; n = 0;±1;±2; · · · is the Bose-
Matsubara frequency. Therefore the energy of basis
system of interacting electron gas it is convenient to
calculate by expression

Ee = E0 + (2βV )−1
∑

ν

∑

q 6=0

Vq

1
∫

0

µ̃2(q,−q|ν,−ν|λ)dλ, (11)

where µ̃2(q,−q|ν,−ν|λ) is the dynamic two-particle
correlation function of auxiliary model of electrons with
the potential of interaction λVq :

µ̃2(q,−q|ν,−ν|λ) =M2(q,−q|ν,−ν|λ)
{

1 + λ
Vq

V
×

×M2(q,−q|ν,−ν|λ)]
}−1

,

M2(q,−q|ν,−ν|λ) =µ̃0
2(q,−q|ν,−ν)

[

1 + λ
Vq

V
×

× µ̃0
2(q,−q|ν,−ν)G(q, ν)]

]

.

(12)

It has been taken into account, that in the case of weak
non-ideality of model the local field correction function
does not depend on “coupling constant”.
The static and dynamic correlation functions of non-

relativistic ideal electron gas are well known. The
analytical expression for µ̃0

2(y,−y) was obtained in
[16], the functions µ̃0

3(q1,q2,−q1 − q2|0, 0, 0) and
µ̃0
4(q1,−q1,q2,−q2|0, · · · , 0) were calculated in [17,

19]. The dynamic functions µ̃0
3(y1, y2,−y1 − y2) and

µ̃0
4(y1,−y1, y2,−y2) were first calculated in [14]. Mi-

croscopic theory of the local field correction func-
tion, which is based on the summation of infinite
series of convergent diagrams and created on the
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functions µ̃0
2(q,−q|ν,−ν), µ̃0

3(q1,q2,q3|ν1, ν2, ν3) and
µ̃0
4(q1,−q1,q2,−q2|ν1,−ν1, ν2,−ν2), are developed in

the works [14, 20].
Correlation functions of relativistic interacting elec-

tron gas also satisfy the expressions (7)-(10), (12).
In general they are similar to the relevant functions
of non-relativistic model, but they have a signifi-
cant dependence on the relativistic parameter x =
h̄kF (m0c)

−1 (kF = (3π2Ne/V )1/3), and the calcula-
tion µ̃0

n(q1, · · ·qn|0) at n ≥ 3 is difficult, because the
electron spectrum is not a quadratic function of the
wave vector. The function µ̃0

2(q,−q|0) has the analyt-
ical representation [22]:

µ̃0
2(q,−q|0) = 2

∑

k,s

nk,s{Ek+q − Ek}−1 =

=
3Ne

m0c2x2
J2(q∗, 0|x);

q∗xJ2(q∗, 0|x) =
2

9
(R+ −R−)

[

1 +
7

4
x2 − q2∗

8

]

+

+
5

72
q∗x(R+ +R−) +

q∗x

12
R0 +

1

3
R3

0×

× ln

∣

∣

∣

∣

R+ −R0

R− −R0

∣

∣

∣

∣

+
1

8
q∗

(

1 +
q2∗
6

){

2 ln |x+R0|−

− ln |(R+ + x+ q∗)(R− + x− q∗)|
}

+
1

6
S3
q×

×
{

ln

∣

∣

∣

∣

1 + 1
2q

2
∗ +

1
2xq∗ + SqR+

1 + 1
2q

2
∗ − 1

2xq∗ + SqR−

∣

∣

∣

∣

−

− ln

∣

∣

∣

∣

1 + 1
2q∗x+ SqR0

1− 1
2q∗x+ SqR0

∣

∣

∣

∣

− 2 ln

∣

∣

∣

∣

x+ 1
2q∗

x− 1
2q∗

∣

∣

∣

∣

}

,

R0 = (1 + x2)1/2, Sq =

(

1 +
1

4
q2∗

)1/2

,

R± = [1 + (q∗ ± x)2]1/2, q∗ =
|q|x
kF

.

(13)

The behavior of the dimensionless factor J2(q∗, 0|x) is
illustrated in fig. 1. As in the non-relativistic case, the
function J2(q∗, 0) has a weak logarithmic peculiarity of
the type

(

x− 1
2q∗

)

ln
∣

∣x− 1
2q∗

∣

∣ in the vicinity to q∗ =
2x (|q| = 2kF ) and the asymptotics:

µ̃0
2(q,−q|0) ⇒















3Ne(1 + x2)1/2

m0c2x2
+ · · · by q → 0;

2Ne

m0c2q∗
+ · · · by q → ∞.

(14)

The function µ̃0
3(q,−q, 0|0), which is the partial case

of the static three-particle function at q2 = −q1, has
the simple analytical representation:

µ̃0
3(q,−q, 0|0) = 3Ne

(m0c2x2)2
J3(q, 0|x),

J3(q, 0|x) =
R0

q̃

{

R̃+ − R̃− +R0 ln

∣

∣

∣

∣

∣

R̃+ −R0

R̃− −R0

∣

∣

∣

∣

∣

}

,

R̃± = [1 + x2(1± q̃)2]1/2, R0 = (1 + x2)1/2.

(15)
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Figure 1: Dependence of the function J2(q∗, 0|x) on
the wave vector q at different values of the relativistic
parameter.

In the formula (15) “non-relativistic” scale was used for
the wave vector (q̃ ≡ |q|/kF ). In the long-wave limit

lim
q→0

µ̃0
3(q,−q, 0|0) ⇒ 3Ne

(m0c2x2)2
(1 + 2x2). (16)

Dependence of dimensionless factor J3(q, 0|x) on the
wave vector and the relativistic parameter is illustrated
in fig. 2. As in non-relativistic case, the function (15)
has a logarithmic peculiarity at q = 2kF .
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Figure 2: Dependence of the static function J3(q, 0|x)
on the wave vector q at different values of the relativis-
tic parameter.

The formulae (13)-(15), and the fig. 1, 2 re-
veal the general property of correlation functions
µ̃0
n(y1, · · · , yn) – steep decrease in the region of wave

vectors (|qi| > 2kF ), providing convergence of inte-
grals in the expand (6). In general for a rough estimate
convergence of series (6) we consider a chemically ho-

mogeneous model (zi = z, z
l
∑

i=1

Ni = Nn), constrain
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the integration for each independent vector qi of the
area |qi| < 2kF , neglect screening interactions, replace
the product of structural factors Sq1

, Sq2
· · ·Sqn

with
Nn, and the functions µ̃0

n(q1, · · ·qn|0) we replace with

3Ne(m0c
2x2)1−n(1 + x2)

1

2
(n−1), which approximately

corresponds to the long-wave asymptotic. For the mag-
nitude of n-th member of series (6) we obtain the esti-
mate

Nemoc
2zn−1αn

0x
2−n(1 + x2)

1

2
(n−1), (17)

where α0 = e2/h̄c is the fine structure constant. Hence,
the series (6) is expansion for dimensionless parameter
zα0, which varies from 0,014 (helium dwarf) to 0,19
(iron dwarf). For the typical dwarfs, mainly consisting
of nitrogen and oxygen, zα0 ≈ 0,1. That is expansion
parameter is a small value, which makes it possible to
restrict ourselves to consideration of two- and three-
electron correlations (we note, that correlation energy
of basis system has the order α2

0). Moreover, the three-
electron function

µ̃0
3(q1,q2,q3|0) = δq1+q2+q3,0{γ3(q1,−q2)+

+ γ3(q2,−q3) + γ3(q3,−q1)},
γ3(qi,qj) = 2

∑

k,s

nk,s(Ẽk + Ẽk+qi
)(Ẽk + Ẽk+qj

)×

× (h̄c)−4{2(k,qi) + q2i }−1{2(k,qj) + q2j }−1;

Ẽk = Ek +m0c
2

(18)

can be calculated approximately, performing the sub-
stitution

Ẽk + Ẽk+qi
⇒ m0c

2C(q̃i|k̃),
C(q̃i|k̃) = {1 + x2(k̃2 + q̃2i )}1/2 + {1 + x2k̃2}1/2,

(19)

which is asymptotically correct both at small and at
large qi. According to the Feynman identity [21]

{2(k,qi) + q2i }−1{2(k,qj) + q2j }−1 =

=

1
∫

0

dλF−2(qi,qj |k),

F (qi,qj |k) = Ωij + 2(k,ρij),

Ωij ≡ q2j + λ(q2i − q2j ); ρij = λqi + (1 − λ)qj .

(20)

Passing from the sum by vector k to integral, we use
dimensionless variable k̃ = |k|/kF , q̃i = |qi|/kF , and
the spherical coordinate system, the Oz of which axis
coincides with the vector ρij , we perform integration
over the angular variables, reducing γ3(qi,qj) to one-

dimensional integral:

γ3(qi,qj) =
3Ne

4(m0c2x2)2

1
∫

0

dk C(qi|k)C(qj |k) fij(k),

fij(k) =
1

√

−δ(k)
ln

∣

∣

∣

∣

Rij + (−δ(k))−1/2

Rij − (−δ(k))−1/2

∣

∣

∣

∣

by k < qR;

fij(k) =
2

√

δ(k)
arctan{δ1/2(k)R−1

ij } by k > qR.

(21)

Here the following notations are was introduced:

Rij ≡ Rij(k) = 2(qi,qj)−
q2i q

2
j

2k2
;

δ(k) = δij(k) =

(

1− q2R
k2

)

· 4q2i q2j (1− t2ij);

qR = (qi − qj)
2{4(1− t2ij)}−1;

(22)

δ(k) is the invariant of problem (δ12(k) = δ23(k) =
δ31(k)), qR is the radius of the circle, circumscribing
the triangle constructed on the vectors q1,q2,−q1 −
q2; tij is a cosine of the angle between the vectors
qi,qj . In the formulae (21), (22) the variables k and
qi, qj are dimensionless (in unit kF ). We use numerical
integration over the variable k in the formula (21).
Integration over the angular variables of the vector

k in the expression for the dynamic two-particle corre-
lation function

µ̃0
2(q,−q|ν,−ν) = 2

∑

k,s

nk,s
Ek+q − Ek

(Ek+q − Ek)2 + ν2
(23)

allows us to present it in the form of one-dimensionless
integral:

µ̃0
2(q,−q|ν,−ν) =

3Ne

m0c2x2
J2(q∗, ν̃|x),

J2(q∗, ν̃|x) = (2xq∗)
−1

∑

s

∞
∫

0

dk∗k∗nk∗,sA(k∗|q∗, ν̃),

A(k∗|q∗, ν̃) =
∑

σ=±1

σ{[1 + (k∗ + σq∗)
2]1/2−

− ν̃ arctan [ν̃−1ησ(k∗, q∗)] +
1

2
(1 + k2∗)

1/2×

× ln [ν̃2 + η2σ(k∗, q∗)]},
ησ(k∗, q∗) = [1 + (k∗ + σq∗)

2]1/2 − [1 + k2∗]
1/2.

(24)

Here appear the dimensionless variables

k∗ =
x|k|
kF

, q∗ =
x|q|
kF

, ν̃ =
ν

m0c2
. (25)

Fig. 3 illustrates the dependence J2(q∗, ν|x) on the
wave vector and the relativistic parameter.
It is well known from the non-relativistic electron

fluid theory [14], that the dynamic local field correction
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Figure 3: Dependence of the dynamic two-particle
function J2(q∗, ν|x) on the wave vector q at fixed val-
ues of the dimensionless frequency(ν = 0.15m0c

2x2)
and different values of the relativistic parameter.

function in the weakly non-ideal model is a universal
function of the variable y = (q, ν), it does not depend
on any parameters, and corresponds to the approxima-
tion

Gid(y) = −(2βVq)
−1{µ̃0

2(y,−y)}−2×
×

∑

q1;ν1

Vq1 µ̃
0
4(y,−y, y1,−y1),

µ0
4(y,−y, y1,−y1) = β−1

∑

k,s

∑

ν∗

Gk,s(ν∗)×

×Gk−q,s(ν∗ − ν)
∑

σ=±1

Gk−σq1,s(ν∗ − σν1)×

× {2Gk,s(ν∗) +Gk+q+σq1,s(ν∗ + ν + σν1)},

(26)

where Gk,s = {iν∗−Ek+µ}−1 is the spectral represen-
tation of the one-electron Green’s function of the ideal
model, ν∗ = πβ−1(2n + 1) is its chemical potential,
ν∗ = πβ−1(2n + 1) is the Fermi-Matsubara frequency
(n = 0;±1;±2; · · · ). After summarizing over the fre-
quencies ν∗ and ν∗ ± σν1 according to the rule

β−1
∑

ν∗

Gk,s(ν∗) = nk,s = {1 + exp [β(Ek − µ)]}−1, (27)

we get the next representation:

Gid(y) = −V −1
q {µ̃0

2(y,−y)}−2
∑

s

∑

k1,k2

nk1,snk2,s×

×
[

V (k1 − k2)f
−
k1,k2

(q, ν) − V (k1 + k2 + q)f+
k1,k2

(q, ν)
]

,

f∓
k1,k2

(q, ν) = Re{[iν + Ek1
− Ek1+q]

−1∓
∓ [±iν + Ek2

− Ek2+q]
−1}2.

(28)

In the work [22] were done numerical calculations in
this approximation of the static the dynamic local field
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Figure 4: Dependence of the loclal field correction func-
tion Gid(q, ν) on the wave vector q and the relativistic
parameter at the frequency ν = 0.01m0c

2x2 (curve 1 –
x=0.05; 2 – x=0.2; 3 – x=0.5; 4 – x=1.0; 5 – x=2.0; 6
– x=5.0).

correction functions for the interacting relativistic elec-
tron gas. The asymptotics of the function at small and
large values of the wave number |q|matches the asymp-
totics of corrections of the non-relativistic theory. The
deviation of these functions is observed near the max-
imum and depends on the value of the relativistic pa-
rameter, as is shown in fig. 4 (the limit Gid(q, ν) at
x → 0 corresponds to the non-relativistic correction).

3. Ground state energy of a model

For the calculation of the interacting electron gas
energy by formulae (11), (12) we should consider, that
Gid(q, ν) does not depend on the “coupling constant”
λ. From the integral term of the formula (11) it is con-
venient to extract the contribution of first-order per-
turbation theory

EHF (x) = −(2βV )−1
∑

q 6=0

Vq

∑

ν

µ̃0
2(q,−q|ν,−ν) =

= −(2V )−1
∑

q 6=0

Vq

∑

k,s

nk+q/2,snk−q/2,s,
(29)

that allows to present Ee in a traditional form

Ee = E0(x) + EHF (x) + Ecorr(x), (30)
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where

Ecorr(x) = Nmc2α2
0

{

1

α2
0

3

4πx3

}

∞
∫

0

dν∗

∞
∫

0

dq∗q
2
∗×

×
{

1

2
ln[1 + L0(y)(1 +G(y)L0(y))]− L0(y)

}

+

+























































1

2
√
−∆

ln
1 +

1

2
L0(y)(1 +

√
−∆)

1 +
1

2
L0(y)(1−

√
−∆)

by ∆ < 0

1√
∆

arctan

1

2
L0(y)

√
∆

1 +
1

2
L0(y)

by ∆ > 0

2G(y)L0(y)

1 + 2G(y)L0(y)
by ∆ = 0,

∆ ≡ ∆(y) = 4G(y)− 1, L0(y) =
4α0x

πq2∗
J2(q∗, ν∗|x).

(31)

is the so-called correlation energy. In the units m0c
2

Ee = Nem0c
2

{

ε0(x)−
3

4π
α0x+ α2

0 εc(x)

}

. (32)

Here

ε0(x) = (2x)−3
{

3x(1 + x2)1/2(1 + 2x2)− 8x3−
− 3 ln [x+ (1 + x2)1/2]

}
(33)

is the contribution of an ideal system per one electron,
−3α0x(4π)

−1 is the contribution of interactions in the
Hartree-Fock approximation, α2

0εc(x) is the correlation
energy. According to the results of numerical calcula-
tions εc(x) can be approximated by the following ex-
pression:

εc(x) = −b0

x
∫

0

dt
(b1a+ t1/2)

t3/2 + tb1a+ b2t1/2a2 + b3a3
×

× 1 + a1t+ a2t

1 + td0
,

a = (α0η)
1/2; a1 = 1,21954; a2 = 1,33205;

d0 = 1,18934; b0 = 0,0621814; b1 = 9,81379;

b2 = 2,82214; b3 = 0,73701.

(34)

At a1 = a2 = d0 = 0 this expression matches the
approximation [23] of the results of ground state en-
ergy calculation of non-relativistic electron fluid model
εMC
c (x) obtained using the Monte-Carlo method [24].
In the region x ≤ 1 the expression (34) is near to
εMC
c (x), and the deviation εc(x) from εMC

c (x) in x > 1
is caused by different asymptotics of these functions:
εMC
c (x) → −b0 lnx+ · · · by x ≫ 1.
In order to calculate the contributions of electron-

nuclear interactions in the products of structure fac-
tors in the formula (6) we have selected one-particle

and two-particle sums by the coordinates of nuclei ig-
noring the three-nuclear effective interactions. In this
approach

E ≃ Ee + Epol + Econf , (35)

where Epol is the polarization energy of electron fluid
by nuclei, it does not depend on the structure of the
nuclear subsystem,

Epol = E
(2)
pol + E

(3)
pol,

E
(2)
pol = − 1

2!

l
∑

i=1

z2iNiV
−2

∑

q

V 2
q µ̃2(q,−q|0),

E
(3)
pol = − 1

3!

l
∑

i=1

z3iNiV
−3

∑

q1,q2

Vq1×

× Vq2V−q1−q2 µ̃3(q1,q2,−q1 − q2|0).

(36)

The configuration energy is determined by the struc-
ture of nuclear subsystem, and expressed through the
effective two-particle potential of interactions of nu-
clei, which is formed by two- and three-electron corre-
lations:

Econf =
1

2!

l
∑

i=1

z2i
V

∑

q

Vq

{

1− Vq

V
µ̃2(q,−q|0)−

− zi
V 2

∑

q1

Vq1V−q−q1 µ̃3(q,q1,−q− q1|0)
}

S
(i)
2 (q,−q)+

+
1

2!

l
∑

i6=j=1

zizj
V

∑

q

Vq

{

1− Vq

V
µ̃2(q,−q|0)− 1

2V 2
×

×(zi + zj)
∑

q1

Vq1V−q−q1 µ̃3(q,q1,−q− q1|0)
}

S(i)
q S

(j)
−q,

S
(i)
2 (q,−q) =

Ni
∑

j1 6=j2=1

exp
{

i(q,Rj1 −Rj2)
}

.

(37)

Let us rewrite the component E
(2)
pol , calculated in the

local field approximation, in the form

E
(2)
pol = Nem0c

2 〈z2〉
〈z〉 α

3/2
0 ε

(2)
pol(x), (38)

where the dimensionless function ε
(2)
pol(x) is of the same

order as εc(x), and 〈zn〉 =
{

l
∑

i=1

Ni

}−1 l
∑

i=1

zni Ni. The

function ε
(2)
pol(x) can be approximated as

ε
(2)
pol(x) = −

x
∫

0

c0 + c1t+ c2t
2 + c3t

3

1 + d1t+ d2t2 + d3t3
dt;

c0 = 4,06151; c1 = 32,6118; c2 = −43,6587;

c3 = 104,13; d1 = 73,8252; d2 = −67,1028;

d3 = 189,781.

(39)
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As is shown in fig. 5, ε
(2)
pol(x) has the linear asymptotics

at x ≫ 1, as well as εc(x). However, the polarization

energy E
(2)
pol exceeds the correlation energy of basis sys-

tem by about 〈z〉α−1/2
0 ≈ 10〈z〉 times, and for 〈z〉 ∼ 10

it is comparable with EHF .
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x

Figure 5: Dependence of functions ε
(2)
pol(x), 10 · ε

(3)
pol(x)

and εc(x) on the relativistic parameter.

The contribution of three-particle correlations in the
polarization energy is represented in the form

E
(3)
pol = Nem0c

2 〈z3〉
〈z〉 α

5/2
0 ε

(3)
pol(x). (40)

In the region x > 1 the ratio ε
(3)
pol(x) ≈ 0,1ε

(2)
pol(x) is

satisfied. At sufficiently large values of nuclei charges

E
(3)
pol is not less than the correlation energy of basis sys-

tem: at 〈z〉 ≥ 6 the contribution E
(3)
pol is close to the

correlation energy, at 〈z〉 ≥ 12 it exceeds the correla-
tion energy by 5 times, and at 〈z〉 = 26 – more than by

20 times. The result of numerical calculation of ε
(3)
pol(x)

is approximated by the expression

ε
(3)
pol(x) = −ax− c0

∞
∫

x

1 + c1/t+ c2t

1 + d1t+ d2t2 + d3t3
dt,

a = 0,0450; c0 = 0,12607; c1 = −0.93695;

c2 = 78,8552; d1 = −23,2602; d2 = 114,5030;

d3 = 164,060.

(41)

From the formulae (38), (40) it follows, that

E
(3)
pol/E

(2)
pol ∼ 0,1zα0, and it determines the order of

three-electron correlations contribution function.

We have calculated the configuration energy in coor-
dinate representation by introducing the effective two-
nuclear potentials. In the two-particle correlations ap-

proximation they are determined by the expressions

V i1,i2
2 (R

(i1)
j1

−R
(i2)
j2

) = V −1
∑

q

V2(q)×

× exp

{

i(q,R
(i1)
j1

−R
(i2)
j2

)

}

,

V2(q) = Vq

{

1− Vq

V
µ̃2(q,−q)

}

.

(42)

In the formula (42) the sum of the vector q includes
a component with q = 0. We have done our calcu-
lation in the frame of model with two-sorts of nuclei.
Therefore

E
(2)
conf =

1

V

∑

q 6=0

V2(q)

{

1

2

∑

i=1,2

S
(i)
2 (q,−q)z2i + z1z2×

×S(1)
q S

(2)
−q

}

=
1

2

∑

i=1,2

z2i
∑

j1 6=j2=1

V2(R
(i)
j1

−R
(i)
j2
) + z1z2×

×
N1
∑

j1=1

N2
∑

j2=1

V2(R
(1)
j1

−R
(2)
j2

)− 1

2
N2

e lim
q→0

{

V −1V2(q)
}

.
(43)

To simplify the calculation of the lattice sum we adopt
a simple model of nuclei distribution in the lattice,
namely

N (i)
j = Nj

{ l
∑

i=1

Ni

}−1

Ni, (44)

where Nj is the number of all knots on the j-th coor-

dination sphere, and N (i)
j is the number of the knots,

occupied by nuclei with charge zi. In this model

E
(2)
conf =

Ne

2
〈z〉

∑

j≥1

NjV2(Rj)−

− Nem0c
2

6

{

x2

(1 + x2)1/2
− xα0

π

}

(45)

where Rj is the radius of the j-th coordination sphere.
The effective two-particle potential is screened, and

at small and medium distances between nuclei it is
close to the expression

V (R) =
e2

R
exp{−R/R0}, (46)

and the screened radius

R0 =

√
π

2
α
1/2
0 aB{x1/2(1 + x2)1/4}−1 (47)

has the order 0,1aB (where aB = h̄2/m0e
2 is the Bohr

radius). At the large distances V2(R) oscillates, but
with small amplitude,

V2(R) ≈ e2

aB

(

R0

2xR

)3

cos(2xR/R0). (48)
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The configuration energy for the simple cubic lattice
of nuclei is calculated numerically and can be repre-
sented as

E
(2)
conf = Nem0c

2〈z〉2/3α0ε
(2)
L (x|〈z〉), (49)

approximating dimensionless factor by expression

ε
(2)
L (x|〈z〉) = −

x
∫

0

a1 + ta2 + t2a3
1 + ta4 + t2a5 + t3a6

t dt, (50)

where all the coefficients a1, · · ·a6 are the functions of
〈z〉, that is

ai(〈z〉) =
ai0 + 〈z〉ai1 + 〈z〉2ai2
ai3 + 〈z〉ai4 + 〈z〉2ai5

. (51)

Similar to the formula (42) we have calculated the
correction to the effective two-nuclear potential by the
three-electron correlations

V
(3)
2 (R) = −V 3

∑

q

Vq

∑

q1

Vq1V−q−q1×

× µ̃3(q,q1,−q− q1|0) exp{i(q,R)},
(52)

where the sum over the vector q includes the compo-
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Figure 6: The effective potential of interactions

V
(3)
2 (R) at different values of the relativistic param-

eter (curve 1 – x = 1.0, 2 – x = 2.0, 3 – x = 3.0, 4 –
x = 4.0, 5 – x = 5.0).

nent q = 0. As shown in fig. 6, V
(3)
2 (R) is the weak

attracting potential of the type of quantum package
screening potential, which is close to the expression

V
(3)
2 (R) = −e2

R
α2
0 A(x)

{

1− exp

[

− R

R0
γ(x)

]}

×

× exp{−R/R0}.
(53)

Contribution to the configuration energy of model by
the three-particle correlations in the model (44) takes
the form, similar to the formula (45):

E
(3)
conf =

1

2
Ne〈z2〉

∑

j≥1

NjV
(3)
2 (Rj)+

+
4

3π2
Neα

2
0〈z〉m0c

2(1 + x2)−1/2I2(x),

(54)

I2(x) =

∞
∫

0

dq

q2ε2(q)
J3(q); J3(q) =

(m0c
2x2)2

3Ne
µ̃0
3(q,−q, 0|0);

This contribution is calculated for the simple cubic lat-
tice of nuclei and represented

E
(3)
conf = Nem0c

2α2
0〈z2〉ε(3)L (x|〈z〉). (55)

At sufficiently large nuclei charges 〈z〉 and x ≥ 2 the

function ε
(3)
L (x|〈z〉) ∼ 0,1ε

(2)
L (x|〈z〉), but it has a posi-

tive sign. It is approximated by the expression

ε
(3)
L (x|〈z〉) = −a+ xb−

∞
∫

x

c0 +
c1
y + c2y + c3y

2

1 + a1y + a2y2 + a3y3
dy. (56)

4. Equation of state of model at T = 0K

For the well known dependence of model energy on
the relativistic parameter we calculate the equation of
state of cold degenerate matter using the expression

P (x) =
dE

dV
=

x4

Ne

(m0c

h̄

)3

(3π2)−1 dE

dx
. (57)

Within accepted approximation in case of two-sorts of
nuclei

P (x) =
πm4

0c
5

3h3
{F(x) + f2(x) + f3(x)}. (58)

Here

F(x) = x(2x2 − 3)(1 + x2)1/2 + 3 ln [x+ (1 + x2)1/2] (59)

is the contribution of the ideal degenerate relativistic
spatially homogeneous electron gas;

f2(x) = −2α0x
4

{

1

π
−4

3

d

dx

(

〈z〉2/3ε(2)L (x|〈z〉)+

+
〈z2〉
〈z〉 α

1/2
0 ε

(2)
pol(x) + α0εc(x)

)} (60)

is the contribution of Coulomb interactions in the two-
electron correlations approximation;

f3(x) = 8α2
0x

4 d

dx

{

〈z2〉ε(3)L (x|〈z〉) + 〈z3〉
〈z〉 α

1/2
0 ε

(3)
pol(x)

}

(61)
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Table 1: Dependence of functions F(x) ·x−4, f2(x) ·x−4 and f3(x) ·x−4 on the relativistic parameter x according
to the formulae (59), (60), (61).

x F(x) · x−4 f2(x) · x−4 f3(x) · x−4

z = 2 z = 6 z1 = 7; z2 = 8 z = 12 z = 2 z = 6 z1 = 7; z2 = 8 z = 12
0.5 0.737488 −0.0251212 −0.08993 −0.113385 −0.208688 0.00151018 0.00503624 0.00724728 0.0123084
0.6 0.857456 −0.0249004 −0.0898357 −0.113389 −0.209376 0.00144201 0.0045685 0.00653182 0.0107583
0.7 0.966234 −0.0247338 −0.0896419 −0.113228 −0.209565 0.00140653 0.00431288 0.00610532 0.00988929
0.8 1.06412 −0.0246166 −0.0894277 −0.11301 −0.209485 0.00138662 0.00415774 0.00582077 0.00935182
0.9 1.15175 −0.0245372 −0.0892269 −0.112785 −0.209267 0.00137469 0.00405367 0.00561505 0.00899025
1.0 1.22991 −0.0244844 −0.089051 −0.112575 −0.208985 0.00136685 0.00397618 0.00545736 0.00872662
1.1 1.29949 −0.0244498 −0.0889018 −0.11239 −0.208681 0.00136085 0.00391243 0.00533111 0.00851882
1.2 1.36139 −0.0244276 −0.0887769 −0.112229 −0.20838 0.00135532 0.00385556 0.00522669 0.00834323
1.3 1.41647 −0.0244137 −0.088673 −0.11209 −0.208093 0.00134944 0.00380207 0.00513813 0.00818666
1.4 1.46551 −0.0244055 −0.0885864 −0.111972 −0.207827 0.00134276 0.0037504 0.00506157 0.008042
1.5 1.50924 −0.0244011 −0.0885141 −0.111872 −0.207584 0.00133514 0.00370008 0.00499435 0.00790579
1.6 1.5483 −0.0243994 −0.0884535 −0.111786 −0.207364 0.00132663 0.00365119 0.00493463 0.00777667
1.7 1.58327 −0.0243994 −0.0884024 −0.111712 −0.207166 0.00131746 0.00360403 0.00488104 0.00765433
1.8 1.61463 −0.0244006 −0.0883592 −0.111649 −0.206988 0.00130788 0.00355898 0.00483256 0.00753897
1.9 1.64282 −0.0244027 −0.0883224 −0.111594 −0.206828 0.0012982 0.00351632 0.00478842 0.00743084
2.0 1.66822 −0.0244053 −0.0882909 −0.111547 −0.206686 0.00128866 0.00347628 0.00474798 0.00733015
2.5 1.7636 −0.0244211 −0.0881871 −0.111386 −0.206164 0.00124826 0.00331614 0.00458706 0.00693448
3.0 1.82417 −0.0244366 −0.0881333 −0.111299 −0.205853 0.00122235 0.00321213 0.00447214 0.00668381
3.5 1.86463 −0.0244497 −0.0881032 −0.111248 −0.20566 0.00120675 0.00314507 0.00438579 0.00652551
4.0 1.89283 −0.0244606 −0.0880853 −0.111216 −0.205535 0.00119715 0.0031007 0.00431866 0.00642247
4.5 1.91319 −0.0244697 −0.0880743 −0.111195 −0.205451 0.00119099 0.0030703 0.00426516 0.0063528
5.0 1.92833 −0.0244773 −0.0880673 −0.111182 −0.205393 0.00118685 0.00304877 0.00422167 0.00630395
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is the three-particle electron correlations.

In the region x ≥ 1 all contributions (with the excep-

tion of ε
(3)
L (x|〈z〉)) to the model energy caused by in-

teractions are negative monotonically decreasing func-
tions of the relativistic parameter. The corrections
f2(x), f3(x) are negative and decrease the pressure. In
the two-electron correlations approximation the equa-
tion of state (58) numerically is very close to the result
of Salpeter [5].
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Figure 7: The ratio of pressure with Coloumb inter-
actions P (x) to the pressure of the ideal relativistic
electron gas P0(x) as function of the relativistic pa-
rameter and nuclear charge (curve 1 – z1 = z2 = 2, 2
– z1 = z2 = 6, 3 – z1 = 7; z2 = 8; 4 – z1 = z2 = 12).

In table 1 is shown the dependence of terms
F(x), f2(x), f3(x) on the relativistic parameter for the
helium dwarf model (z1 = z2 = 2), carbon (z1 =
z2 = 6), nitrogen-oxygen (z1 = 7, z2 = 8; N1 = N2)
and magnesium (z1 = z2 = 12). The relative de-
crease of pressure by the interactions {F(x) + f2(x) +
f3(x)}F−1(x) for the same models is illustrated in
fig. 7.

5. Conclusions

Within the reference system approach, which was
adapted for the description of degenerate relativis-
tic electron subsystem, the energy of ground state of
electron-nuclear model, as well as equation of state of
the model, have been calclulated in a wide range of the
relativistic parameter at absolute zero temperature.
As it is shown in our calculation, the contributions
of Coloumb interactions to the energy of ground state
and pressure, caused by two-electron correlations are
determinant and increase with increasing the nuclear
charge. The contributions, caused by three-electron
correlations are much smaller, but they exceed the con-
tribution of correlation energy of electron fluid, espe-
cially at large values of nuclear charge.
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