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ABSTRACT. While galaxy cluster catalogs were
compiled many decades ago, other structural elements
of cosmic web are detected at definite level only in
the newest works. For example, extragalactic filaments
were described by velocity field and SDSS galaxy dis-
tribution during the last years. Large-scale structure
of the Universe could be also mapped in the future
using ATHENA observations in X-rays and SKA in ra-
dio band. Until detailed observations are not available
for the most volume of Universe, some integral statis-
tical parameters can be used for its description. Such
methods as galaxy correlation function, power spec-
trum, statistical moments and peak statistics are com-
monly used with this aim. The parameters of power
spectrum and other statistics are important for con-
straining the models of dark matter, dark energy, in-
flation and brane cosmology. In the present work we
describe the growth of large-scale density fluctuations
in one- and three-dimensional case with Fourier har-
monics of hydrodynamical parameters. In result we
get power-law relation for the matter power spectrum.

Keywords: Cosmology: theory, cosmology: large-
scale structure of Universe.

1. Introduction

Large-scale structure of the Universe (LSS) is
thought to be a composite of galaxy clusters, superclus-
ters, voids, walls and filaments. It is very hard to de-
tect extragalactic filaments with current observational
facilities (Tugay, 2014), although future projects such
as ATHENA and SKA (Kale et al., 2016) gives some
perspectives. Attempts to build filament network on
Sloan Digital Sky Survey data were performed in (Tu-
gay, 2014) and (Chen et al., 2016) using the method
of density ridges. X-ray space observatories gives us
new findow for LSS studying. First results of X-ray
galaxy distribution based on XMM-Newton observa-
tions were get in (Elyiv et al., 2012) and (Tugay, 2012).
Extragalactic filaments and other LSS details could be
found in future with ATHENA observations (Nandra

et al., 2013; Nevalainen, 2013). This may be also possi-
ble due to ATHENA detection and observations of 3.5
keV emission line of sterile neutrino decay (Neronov
& Malyshev, 2016). Until there are no enough ob-
server galaxy positions to recover internal structure of
single filaments, the main way of LSS studying is esti-
mation of general statistic parameters of extragalactic
object distribution, such as correlation function, power
spectrum and other. Such parameters should be pre-
dicted from cosmological theoretical models including
the theory of growth of primordial density perturba-
tions (Bernardeau et al., 2002).
In this work we consider simple case of gravitational

instability, apply power law assumption for Fourier
harmonics of perturbations and derive a relation for
power spectrum.

2. Starting equations

LSS formation can be described in Newtonian grav-
ity by the equations of Poisson, Euler and continuity:

∆ϕ = 4πGρ (1)

d(ρv⃗)

dt
+ (v⃗ · ∇)(ρv⃗) = −ρ∇ϕ (2)

dρ

dt
= −ρ∇ · v⃗ (3)

We will consider velocity field as irrotational. This
allows us introduce velocity potential and divergence:

−→u = −∇Φ, θ = ∇ · −→u (4)

Then we can write continuity equation as

δ̇ + θ = 0 (5)

And Euler equation as

−̇→u + (−→u · ∇)−→u = −∇Φ (6)

or
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θ̇ +∇ϕ+ (−→u · ∇)−→u = 0 (7)

Let’s take the divergence from the last equation and
use the continuity equation. We will get single equation
for continuous matter in own Newton gravity field:

δ̈ +H2δ +∇(−→u · ∇)−→u = 0 (8)

where H is inverse character time of the system. It may
be close by order of value to Hubble constant but not
necessary. To analyse LSS evolution we will onsider
density contrast as superposition of plane waves:

δ =
∑
m

δmei(kmx+ωmt) (9)

In the linear approximation we can neglect the
last term in (8). We will then find the solution for
exponential growth of all modes with character time
t=1/H. Below we will solve the equation (8) in one-
dimentional and three-dimentional weakly non-linear
case.

3. One-dimentional case

In this case velocity field has single component and
the values of θ and Φ ane connected with it by simple
spatial derivative:

u = −dΦ

dx
, θ = −d2Φ

dx2
(10)

Now equation (8) can be written as

δ̈ +H2δ + θ2 + u
dθ

dx
= 0 (11)

Now we can write plane wave decompositin for Φ, u
and θ:

Φ =
∑
m

Φmei(kmx+ωmt) (12)

u =
∑
m

umei(kmx+ωmt) (13)

θ =
∑
m

θmei(kmx+ωmt) (14)

Let’s substitute last expression to (11) and perform
Fourier transformation. We will keep one θ in the third
term and dθ/dx in the fourth term unchanging. We will
get the next expression for harmonics.

δm(H2 − ω2
m) + θm · θ + um · dθ

dx
= 0 (15)

It can be shown, suprisingly, that in one dimentional
case there is simple expression between harmonic am-
plitudes of u, θ and dθ/dx such as

θm · θ = um · dθ
dx

(16)

So we have

δm(H2 − ω2
m) + 2

∑
m

θ2mei(kmx+ωmt) = 0 (17)

This means that θm = 0 and we can not consider
nonlinear dynamics with out assumptions in one
dimentional case. (Abell, Corwin & Olowin, 1989)

4. Three-dimentional case

Let’s write nonlinear term in (8) in tensor notations

∇(−→u · ∇)−→u = up,quq,p + uqup,pq (18)

and change velocity field with scalar potential:

∇(−→u · ∇)−→u = Φ,pqΦ,qp +Φ,qΦ,ppq (19)

Then equation (8) takes form

δ̈ +H2δ + (∇⊗−→u ) · (∇⊗−→u ) +−→u · ∇θ = 0 (20)

or

δ̈ +H2δ +Φ,pqΦ,qp +Φ,qΦ,ppq = 0 (21)

Direct tensor product of nabla operator and vector
velocity field can be written for plane waves (remember
(4)):

∇⊗−→u =
up

dxq
=

d

dxq
(−ikpΦ) = −kpkqΦ (22)

Double scalar product of such two tensors is equal
to

(∇⊗−→u ) · (∇⊗−→u ) =
∑
p,q

k2pk
2
qΦ

2 = k4Φ2 (23)

Now let’s find the derivatives in the last term in (21)
in the plane wave assumption:

Φ,q = −−→u = i
−→
k · Φ (24)

Φ,pp =
d

dxp
(−ikp · Φ) = −k2Φ = −θ (25)

∇θ = −k2−→u = k2∇Φ (26)

−→u · ∇θ = −i
−→
k Φ · (−k2−→u ) = ik2

−→
k Φ · (−i

−→
k )Φ = k4Φ2

(27)
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Applying all above derivatives, equation (8) takes
form

δ̈ +H2δ + 2k4Φ2 = 0 (28)

or for Fourier harmonics

δm(H2 − ω2
m) + 2k4mΦ2

m = 0 (29)

In the opposition to one-dimentional case, now we
can get non-trivial result with additional assumptions.
First, let’s suppose that LSS is periodical in the cube
with side equal to L. Then we have straight expres-
sion for wavenumber: km = 2πm/L. Second, suppose
powerlaw relation of harmonics of velocity potential:
Φm = Φ0m

γ . The last term in (29) must be constant.
This gives us

k4mΦ2
m = (2πm/L)4 · Φ2

0m
2γ (30)

and finally

γ = −2 (31)

So we get inverse power law relation for matter
power spectrum which is well agreed with standard
cosmological model and analysis of galaxy observations
(Tegmark et al., 2004):

P = P0(k/k0)
−2 (32)

5. Results and conclusion

Matter power spectrum parameters were found in
this work in simple analytical model. More general
case will be considered in the next work under wider
assumptions for different functional relations for
Fourier harmonics of density and velocity field.
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