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ABSTRACT. This paper describes the developed
model of dark matter cored density profiles. This
model was recently proposed by Dmytro Iakubovskyi
(Iakubovskyi & Rudakovskyi, in preparation). It has
only one extra parameter – the maximal value fmax of
phase-space distribution function – that turn a cusped
Navarro-Frenk-White density profile into a cored one.
This paper focuses on the estimation of the influence
of velocity anisotropy on the cored density profile by
using the Osipkov-Merritt model. The density profiles
of the typical dwarf-spheroidal galaxy for different
masses of fermionic dark matter particle and different
anisotropy parameters ra was calculated. It was
obtained that the influence of velocity anisotropy on
the cored density profile is small.
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1. Introduction

The nature of dark matter particles is one of the most
important questions of astroparticle physics and cos-
mology. The dark matter particle candidates could be
classified into two groups: warm dark matter (WDM)
particles with relativistic initial velocities (Bisnovatyi-
Kogan & Novikov, 1980) and cold dark matter (CDM)
with non-relativistic initial velocities (Blumenthal et
al, 1984). The standard cosmology ΛCDM model can
predict well the large-scale structure of the Universe.
But there is no solid evidence that the ΛCDM predic-
tions are successful on the small scales.
The recent numerical simulations of cold dark matter
suggest the density distribution of dark matter in the
haloes can be described by the Navarro-Frenk-White
(NFW) profile (Navarro, Frenk, White, 1996; Navarro,

Frenk, White, 1997):

ρNFW (r) =
ρ0

r
rs

(
1 + r

rs

)2 (1)

where rs and ρ0 are the parameters of the halo. The
parameters concentration C200 and halo mass M200

are rather used. The M200 is the mass of sphere
with average density 200 times larger than the critical
density of the Universe. The radius of this sphere r200
is connected with rs as the r200 = C200rs.
The Navarro-Frenk-White profile has a singularity
(cusp) at r = 0. But the observations (see, e.g. de
Block, 2010) prefer the much flatter shape of density
profile (core with constant density near the center
of the halo). The cores could be naturally produced
by the feedback of supernovae (Navarro, Eke, Frenk,
1996; Pontzen & Governato, 2012), in the fermionic
(see, e.g., Ruffini & Stella, 1983) or self-interacting
dark matter paradigm (e.g. Kamada et al., 2017). In
this paper, we focus on the fermionic particles as DM
candidates.
According to the Liouville theorem, the phase-space
density of fermionic warm dark matter cannot be
larger than some maximal value fmax. This fact leads
to the limits on the mass of DM particle (Tremaine &
Gunn, 1979; Boyarsky et al., 2009). The previous ana-
lytical models of dark matter haloes as self-gravitating
fermionic gas (Ruffini & Stella, 1983; Bilic & Viollier,
1997; Merafina & Alberti, 2014; Chavanis, Lemou,
Mehats, 2015; Domcke & Urbano, 2015; Vega &
Sanchez, 2016; Arguelles et al., 2016; Di Paolo, Nesti,
Villante, 2017) require non-trivial assumptions about
the temperature of dark matter and their distribution
function. In this paper, we propose the method of
calculating cored density distributions without such
disadvantages. We used such cosmological constants
from thePlanck satellite : Ω0 = 0.307, h = 0.678,
ΩΛ = 0.693, Ωb = 0.0483 (Planck collaboration, 2016).
This paper is structured as follows. Sec. 2.1 briefly
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describes the model of cored density profiles proposed
by Dmytro Iakubovskyi (Iakubovskyi & Rudakovskyi,
in preparation). Sec. 2.2 focuses on the developed
model, which includes velocity anisotropy according
to Osipkov-Merritt model. Finally, Sec 3. presents
short discussion and conclusion.

2. Methods

2.1. Isotropic halo density profiles

If the velocity distribution of the dark matter parti-
cles is isotropic (the distribution function depends only
on the energy of the particle), the phase-space den-
sity distribution is connected with density profile by
the Eddington transformation (Binney & Treemaine,
2008) :

f(E) =
1

π2
√
8

d

dE

∫ 0

E

dρ

dΦ

dΦ√
E − Φ

. (2)

where E is total energy, E = v2

2 + Φ(r), v is veloc-
ity of the dark matter particle, Φ(r) is gravitational
potential. The gravitational potential is defined as:

Φ(r) = 4πGN

∫ r

0

dx

x2

∫ x

0

ρ(y)y2dy, (3)

where GN is gravitational constant.
The phase-space density corresponding to the NFW
profile is infinite at the center of the halo. But the
phase-space density of the fermionic gas cannot ex-
ceed the maximal phase-space density (Boyarsky et al.,
2009):

fmax =
gm4

FD

2(2πh̄)3
(4)

where g is internal degrees of freedom of fermions (we
assume that g = 2), mFD is the mass of the fermion
particle.
Hence, following method of obtaining the cored den-
sity profile was proposed. This method is based on the
assumption that the mass density follows NFW law at
large scale and phase-space density distribution func-
tion is limited by maximal value fmax. The phase-
space density distribution function corresponding to
staring NFW profile is calculated. Assuming that the
DM particle mass is mFD, we truncate obtained dis-
tribution function f(E) by the maximal value fmax:

ftNFW (E)=

{
fNFW (E), f(E) < fmax

fmax, f(E) ≥ fmax
(5)

The truncated phase-space density distribution func-
tion can be converted to the modified truncated matter
density profile:

ρtNFW (r) = 4π

∫ 0

Φ(r)

ftNFW (E)
√
2 (E − Φ(r))dE

(6)

New truncated density profile ρ(r) corresponds to
the new gravitational potential and new phase-space
density distribution function. Hence, the required
cored density profile can be obtained iteratively. It
was obtained that the 5 iterations are enough for con-
vergence of truncated density profiles.
The dwarf spheroidal galaxies are the objects with
highest average phase-space density (Boyarsky et al.,
2009). I assume that the density profile of dwarf
spheroidal galaxy on large scales is similar to the NFW
profile with parameters M200 = 108M⊙ and C200 = 30.
I choose the possible values of DM particle mass as
mFD = 250, 500, 1000, 2000 eV and ∞ (this case corre-
sponds to the NFW profile at all radii). The obtained
density profiles are depicted on Figure 1.

Figure 1: Cored halo density profiles of typical dwarf
spheroidal galaxy for fermionic dark matter particles
with masses mFD = 250, 500, 1000, 2000 eV. Velocity
distribution is isotropic. NFW profile corresponds to
the mFD = ∞, its parameters are M200 = 108M⊙ and
C200 = 30 respectively.

2.2. Cored density profile in Osipkov-Merritt model

The anisotropy of velocities in the halo is described

by the parameter β(r) = 1− σ2
t (r)

σ2
r(r)

, where σt and σr are

tangential and radial velocity dispersions. The density
profiles in previous sections were obtained in the as-
sumption that β = 0 (σr = σt). In this section, we
estimate the influence of anisotropy on cored profile by
using the Osipkov-Merritt model (Osipkov, 1979; Mer-
ritt, 1985; Binney & Tremaine, 2008). The Osipkov-
Merritt model is based on the assumption that the
phase-space density distribution function depends on

the isolated integral of motion Q = E + L2

2r2a
, where E

is the energy, L is angular momentum, ra is anizotropy
radius (parameter of the halo). The anisotropy param-

eter in this model is β = 1− σ2
t

σ2
r
= 1− 1

1+ r2

r2a

. For r ≪ ra

the velocity distribution is isotropic, and anisotropic
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for large radii. The case ra → ∞ corresponds to the
isotropic velocity distribution.

Denoting the ρQ(r) =
(
1 + r2

r2a

)
ρ(r), the Eddington’s

transformation changes to:

f(Q) =
1

π2
√
8

d

dQ

∫ 0

Q

dρQ
dΦ

dΦ√
Q− Φ

. (7)

The phase-space density distribution function f(Q)
is truncated by fmax:

ftNFW (Q)=

{
f(Q), f(Q) < fmax

fmax, f(Q) ≥ fmax
(8)

Than truncated density profile is calculated as follows:

ρtNFW (r) =
4π(

1 + r2

r2a

) ∫ 0

Φ(r)

ftNFW (Q)
√
2 (Q− Φ(r))dQ.

(9)
In this paper 5 iterations was used in iterative process
(similarly to previous section). The obtained results
for typical dwarf spheroidal galaxy, mFD = 500 eV
and ra = 0.25, 0.5, 1 kpc is depicted on Fig. 2.

Figure 2: Cored density profiles of typical dwarf
spheroidal galaxy with anisotropy radiuses ra =
0.25, 0.5, 1,∞ kpc and mFD = 500 eV. ra = ∞ cor-
responds to the isotropic cored halo.

3. Discussion and conclusion

This paper focuses on the development of the iter-
ative method of calculation of the cored halo density
profile for fermionic dark matter particles (proposed
by Dmytro Iakubovskyi; Iakubovskyi & Rudakovskyi,
in preparation). According to this method, the phase-
space density distribution f(E) (corresponding to the
NFW profile) was calculated by using the Eddington
transformation. Then f(E) was truncated phase-space
density by some maximal value fmax and recalculated
corresponding truncated mass density ρtNFW . This
procedure was iterated until ρtNFW converges. On
large scales ρtNFW is well described by NFW profile.

But near the center of the halo, the density is flatten-
ing. This core corresponds to the degenerate fermionic
dark matter gas, which phase-space density cannot ex-
ceed some maximal values fmax. The obtained shape
of ρtNFW is analogous to the results of the simulations
in (Shao et al., 2013; Maccio et al., 2013).
The cored density profile is characterized by core ra-
dius rc. In this paper the core radius is defined as
ρtNFW (rc) = 1

4ρtNFW (0). In this paper the density
profile of typical dwarf spheroidal galaxy is assumed
on large scales as described by NFW with parameters
M200 = 108M⊙, C200 = 30. It was found for this halo
that rc ≃ 0.03 kpc for mFD = 2000 eV, rc ≃ 0.2 kpc
for mFD = 500 eV, rc ≃ 0.7 kpc for mFD = 250 eV.
Obtained density profiles showed the decreasing den-
sity of core ρtNFW (0) with increasing the mass of DM
particle. The difference in M200 of initial NFW profile
and M200 of obtained cored density profile for dwarf
spheroidal galaxy does not exceed 10% .
The influence of velocity anisotropy on the cored den-
sity profile was estimated by using the Osipkov-Merritt
(OM) model. OM model assumes that the distribu-
tion function depends on isolated integral of motion

Q = E + L2

2r2a
instead of E. The natural assumption

is that the smallest value of anisotropy parameter ra
must be comparable with the core radius of isotropic
halo rc. This assumption is based on the fact that cen-
tral parts of haloes seem to be isotropic (Boyarsky et
al., 2009). In this paper I focus on the mFD = 500 eV,
hence the minimal ra = 0.25 kpc was chosen. It was
obtained that the influence of anisotropy on a radius
of a core is negligible for all tested ra. The density in
the core is increased maximum by 20 % in the presence
of velocity anisotropy. For ra ≥ 1 kpc the difference
between the anisotropic and isotropic density profiles
is negligible.
Developed model of cored density profile combined

with the models of baryonic feedback processes and
observations of dwarf spheroidal galaxies can be used
for constraining mass of fermionic dark matter particle
candidate.
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