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A canonical approach for constructing of the classical
and quantum description spherically-symmetric
con�guration gravitational and electromagnetic �elds
is considered. According to the sign of the square
of the Kodama vector, space-time is divided into R-
and T-regions. By virtue of the generalized Birkho�
theorem, one can choose coordinate systems such that
the desired metric functions in the T-region depend on
the time, and in the R-domain on the space coordinate.
Then, the initial action for the con�guration breaks
up into terms describing the �elds in the T- and R-
regions with the time and space evolutionary variable,
respectively. For these regions, Lagrangians of the
con�guration are constructed, which contain dynamic
and non-dynamic degrees of freedom, leading to
constrains. We concentrate our attention on dynamic
T-regions. There are two additional conserved physical
quantities: the charge and the total mass of the
system. The Poisson bracket of the total mass with
the Hamiltonian function vanishes in the weak sense.
A classical solution of the �eld equations in the
con�guration space (minisuperspace) is constructed
without �xing non-dynamic variable. In the framework
of the canonical approach to the quantum mechanics
of the system under consideration, physical states
are found by solving the Hamiltonian constraint in
the operator form (the DeWitt equation) for the
system wave function Ψ. It also requires that Ψ is
an eigenfunction of the operators of charge and total
mass. For the symmetric of the mass operator the
corresponding ordering of operators is carried out.
Since the total mass operator commutes with the
Hamiltonian in the weak sense, its eigenfunctions must
be constructed in conjunction with the solution of the
DeWitt equation. The consistency condition leads to
the ansatz, with the help of which the solution of the
DeWitt equation for the state Ψem with a de�ned
total mass and charge is constructed, taking into
account the regularity condition on the horizon. The
mass and charge spectra of the con�guration in this
approach turn out to be continuous. It is interesting
that formal quantization in the R-region with a space
evolutionary coordinate leads to a similar result.
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1. Introduction

Spherically-symmetric systems of gravitational
and electromagnetic �elds represent the simplest
con�gurations for check of the main ideas and results
of quantum gravitation. They are a convenient testing
ground for studying some of the problems arising
from a rigorous consideration of a more complete
theory. One of the main features general-relativistic
con�gurations is their degeneracy. The general
formalism of the canonical approach to degenerate
systems was constructed by Dirac [1], which was
then developed in many works (see, for example,
[2,3,4]). Problems of the quantum description
spherically-symmetric con�gurations gravitational
and electromagnetic �elds was considered in many
work A general, geometrodynamical approach to the
spherically symmetric gravitational �eld was developed
in [5], which was then generalized to the case of a
spherically symmetric con�guration electromagnetic
and gravitational �elds in [6].
The proposed model is based on the observation that

the classical spherically-symmetric con�gurations of
electromagnetic and gravitational �elds are stationary
from the point of view of an external observer, have
certain regions of space-time with dynamic behavior.
This means that these regions do not allow a timelike
vector Kodama (Killing) [7], which implies in these
regions the evolution of the geometry of space-time
in time. This evolution of a space-time geometry is
also responsible for quantum-mechanical properties of
the considered model of the charged black hole. Such
models, with a �xed evolutionary time coordinate
and space-like Killing vector were considered in [8, 9].
In this paper, on the basis of simple approach using
the DeWitt equation and quantum mass and charge
operators, a quantum description of the spherically
symmetric con�guration of the gravitational and
electromagnetic �elds is constructed, i.e. quantum
model of a charged black hole with a continuous
spectrum of masses and charge.
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2. Classical description of the spherically-

symmetric con�guration of the gravitational

and electromagnetic �elds

Consider the spherically symmetric space-time M (4)

with the metric

ds2 = gµνdx
µdxν = γabdx

adxb −R2dσ2 , (1)

dσ2 = dθ2 + sin2 θdα2 . (2)

Here R = R(xa), γab = γab(x
a) � 2D metric tensor,√

−g =
√
−γR2 sin θ, ãäå g = det |gµν |, γ = det |γab|,

µ, ν = 0, 1, 2, 3 ; a, b = 0, 1.
The total action for a system of gravitational and

electromagnetic �elds has the form

S = − 1

16πc

∫
M(4)

(
c4

κ
(4)R+ FµνFµν

)√
−gd4x . (3)

Here (4)R is the scalar curvature of M (4) with
respect to the metric gµν , Fµν = Aν,µ − Aµ,ν is the
electromagnetic �eld tensor, where Aµ = {Aa, 0, 0} is
vector potential.
In the spherically symmetric case, after integrating

over the angles and discarding the surface term, the
action (3) can be represented in the form

S = − 1
4c

∫
M(2)

{
c4

κ

√
−γ
(
R2 (2)R+ 2(∇R)2 − 2

)
− 2√

−γ
R2E2

}
d2x , (4)

where (2)R is scalar curvature M (2) (radially-time
part M (4)), (∇R)2 = γabR,aR,b. The reduced
action is invariant under coordinate transformations
xa = xa(x́b).
In a spherically-symmetric space-time there is a

preferable reference system (RS). Tangents to world
lines of this RS are proportional to Kodama's vector

K⃗ = Ka∂a = −eabR,b∂a . (5)

It is easy to see that K⃗R = KaR, a = 0 and the Kodama
vector satis�es the continuity equation Ka

; a = 0. For
the free space, as well as for electrovacuum spaces, the
Kodama vector is transformed into a Killing vector,
which corresponds to the generalized Birkho� theorem
(Frolov, 1998).
Using an admissible coordinate transformation, we

lead the metric (1) to the diagonal form

ds2 = f(r, x0)(dx0)2 − h(r, x0)dr2 −R2(r, x0)dσ2 , (6)

where f > 0, h > 0. Then
√
−γ =

√
fh and the action

takes the form

S = 1
2c

∫
M(2)

{
c4

κ

√
hf
{

R
hR,1 (ln (fR)),1 −

−R
f R,0 (ln(hR)),0 + 1

}
+ R2

√
fh
E2
}
d2x , (7)

where R,0 = ∂R/∂x0, R,1 = ∂R/∂r. In what follows
we con�ne ourselves to the class of diagonal metrics.
Note that information about the structure of M (2)

is contained in the square of the Kodama vector

(K⃗)2 = −(∇R)2 =
1

h
(R,1)

2
+

1

f
(R,0)

2
. (8)

Light surfaces R(r, x0) = Rg = const, for which

(K⃗)2 = −(∇R)2 = 0, divide M (2) into regions

R-regions M
(2)
R ⊂M (2), when (K⃗)2 > 0 ,

T-regions M
(2)
T ⊂M (2), when (K⃗)2 < 0 .

In the R-region the surface R(r, x0) = const are
timelike, and in the T-region is spacelike. In the T-
region we sometimes use the notation R = cT . Using
the generalized Birkho� theorem, in the R-region we
can choose a coordinate system (CS) in which γab and
R depend only on the space-like coordinate r. Similarly,
in the T-region, there exists an CS in which γab and R
depend on the time-like coordinate x0.
In the T-region it is convenient to go to the new

variable

f(x0) =
N2(x0)

h(x0)
, A1 = ϕ , (9)

so that the metric (6) takes the form

ds2T =
N2(x0)

h(x0)
(dx0)2 − h(x0)dr2 −R2(x0)dσ2 . (10)

In this case for the action (7) we get

ST =
∫

x0∈M
(2)
T

LT dx
0 , (11)

LT = l
2c

{
1
N

[
R2 (ϕ,0)

2 −

− c4

κ

(
RR,0h,0 + h (R,0)

2
)]

+ c4

κ N
}
, (12)

where LT is the Lagrangian of the reduced system.
Here, l = r2 − r1 is a constant that arises as a
result of integration over r in the range from r1 to r2,
permissible transformations are x0 = x0(x́0).
Further, it is convenient to go over to the so-called

characteristic variables {ξ = hR, R = cT, ϕ}. Then
the metric and Lagrange function of the T-region take
the form

ds2 = N2R

ξ

(
dx0
)2 − ξ

R
dr2 −R2dσ2 , (13)

L =
l

2c

{
1

N

[
−c

4

κ
ξ̇Ṙ+R2ϕ̇2

]
+
c4

κ
N

}
. (14)

In the case of the R-region, we pass to the variables

h(r) =
N2

R(r)

f(r)
, {η = fR,A0 = φ} , (15)
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in which the metric and Lagrange functions in the
characteristic variables take the form

LR =
l

2c

{
1

NR

[
c4

κ
Ŕή +R2φ́

]2
+
c4

κ
NR

}
, (16)

ds2R =
η

R
(dx0)2 −N2

R

R

η
dr2 −R2dσ2 . (17)

From the Lagrangian (14) follows the primary
constraint PN = ∂L/∂Ṅ = 0 and momenta

Pi = ∂L/∂q̇i:

Pξ = − c3l

2κN
Ṙ , PR = − c3l

2κN
ξ̇ , Pϕ =

l

cN
R2ϕ̇ . (18)

The Hamiltonian function H = Pξ ξ̇ + PRṘ+ Pϕϕ̇−L
leads to the secondary constraint in the T-region

H =
Nc

2l

{
−4κ

c4
PξPR +

1

R2
P 2
ϕ − l2c2

κ

}
∼ 0 (19)

in the characteristic variables.
The Maxwell equations following from actions (3) or

(4) lead to to the relation (R2/NE),b = 0 . This implies
the conservation law

R2

N
E = Q = const . (20)

It is natural to de�ne the following function:

Q(N,R, ϕ̇) =
R2

N
ϕ̇ =

c

l
Pϕ . (21)

This function for a free electromagnetic �eld is
conserved and is equal to the con�guration charge
inside the region of radius R. In what follows we will
call it the charge function.
We introduce the mass function (Cahill,1970;

Berezin, 1987; Gladush, 2012) by the relation:

Mf (γab, R) =
c2

2κ
R
(
1 + γabR,aR,b

)
. (22)

In the R-region, it is related to the �eld energy of
a spherical region of radius R. Its value for the free
gravitational �eld is constant:Mf = m and determines
the mass that appears in the Newtonian limit of the
gravitational �eld. In the T-region, it is conserved and
in the used variables has the form

Mf =
c2

2κ

(
R+

1

N2
ξṘ2

)
. (23)

For the system under consideration, Mf ̸= const. It
can be shown that the quantity given by formula

Mtot =Mf +
Q2

2c2R
= const , (24)

is conserved and has the meaning of the total �eld
mass of the spherical region of radius R taking into

account a contribution of the electromagnetic �eld. In
characteristic variables, as well as through momenta,
it has the form

Mtot =
c2

2κ

[
R+

1

N2

(
ξṘ2 +

κR3ϕ̇2

c4

)]
, (25)

Mtot =
1

2l2

[
l2c2

κ
R+

4κ

c4
ξP 2

ξ +
1

R
P 2
ϕ

]
. (26)

We write out the Poisson brackets of the dynamic
quantities:

{H,Mtot} =
2κ

l2c4
PξH ∼ 0 , {H,Q} = {Mtot, Q} = 0 .

The Lagrangian multiplier N can be excluded from
the action (11), (12). Then the initial variational
principle is transformed into the variational principle
in the con�guration space (Gowdy, 1970). We rewrite
the Lagrange function (14) in the form

LT =
l

2c

{
T

N
+NU

}
, (27)

where

T = −c
4

κ
ξ̇Ṙ+R2ϕ̇2 , U =

c4

κ
. (28)

Then we have

∂LT

∂NT
=

l

2c

{
− T

N2
T

+ U

}
= 0 (29)

This implies NT =
√

T/U and from (11) we obtain
action for a geodesic in a minisuperspace

S =
lc√
κ

∫ √
−c

4

κ
dξdR+R2 (dϕ)

2
=

lc√
κ

∫
dΩ (30)

with the metric

dΩ2 = −c
4

κ
dξdR+R2 (dϕ)

2
. (31)

The geodesic equations obtained from here, together
with the Hamiltonian constraint, are equivalent to the
original system of Einstein's equations. It turns out
that the corresponding con�guration space with the
metric (31 is �at, since the curvature tensor for the
metric (31) vanishes. Let us write out the volume
element de�ning the measure in the con�guration
space:

dV =
√
−det ∥ΩAB∥dq1dq2dq3 =

c2

2κ
RdξdRdϕ . (32)
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3. Quantum description of the spherically-

symmetric con�guration of the gravitational

and electromagnetic �elds

The quantum states of the �eld con�guration under
consideration are determined by the wave function
Ψ(R, ξ, ϕ) on the minisuperspace with the coordinates
{R, xi, phi}. The corresponding momentum operators
in this representation have the form:

P̂R = −i~ ∂

∂R
, P̂ξ = −i~ ∂

∂ξ
, P̂ϕ = −i~ ∂

∂ϕ
. (33)

The classical Hamiltonian, the total mass and charge
functions lead to operators

Ĥ =
Nc

2l

{
4κ~2

c4
∂2

∂R∂ξ
− ~2

R2

∂2

∂ϕ2
− c2l2

κ

}
, (34)

M̂ =
1

2l2

(
l2c2

κ
R− 4κ~2

c4
∂

∂ξ
ξ
∂

∂ξ
− ~2

R

∂2

∂ϕ2

)
. (35)

Q̂ =
c

l
P̂ϕ = −i c~

l

∂

∂ϕ
. (36)

For the Hermitian operator of the total mass, in
the con�guration space with measure (32) we use
the following ordering of the operators: P̂ξξP̂ξ. The
following commutation relations hold[
Ĥ, M̂

]
= −2κ~2

l2c4
∂

∂ξ
Ĥ ∼ 0 ,

[
Ĥ, Q̂

]
=
[
Q̂, M̂

]
= 0 .

States with a certain total mass and charge correspond
to eigenfunctions and eigenvalues of the operators of
total mass and charge:

M̂Ψm = mΨm , Q̂Ψq = qΨq . (37)

They reduce to the following equations{
c2l2

κ
R− 4κ~2

c4
∂

∂ξ
ξ
∂

∂ξ
− ~2

R

∂2

∂ϕ2

}
Ψm = 2l2mΨm .

(38)
∂

∂ϕ
Ψq =

iql

c~
Ψq . (39)

From the last equation we obtain Ψq = Aei(ql/c~)ϕ.
Now, the general wave functions of the DeWitt
equation ĤΨ = 0 and the charge operator, also as
general wave functions of the operators total mass and
charge, can be represented in the form

Ψ = ψ (ξ,R) ei(ql/c~)ϕ , Ψm = ψm (ξ,R) ei(ql/c~)ϕ .

The functions ψ and ψm satisfy the equations(
4∂2

∂R∂ξ
+
c2q2l2

κ~2
1

R2

)
ψ =

c6l2

κ2~2
ψ , (40)

{
l2c2

κ
R− 4κ~2

c4
∂

∂ξ
ξ
∂

∂ξ
+

1

R

q2l2

c2

}
ψm = 2ml2ψm .

(41)

Next, we introduce Planckian and dimensionless
quantities

m2
pl = c~/κ, l2pl = ~κ/c3, qpl = mpl

√
κ =

√
c~ ,

µ = m/mpl, σ = q/qpl, x = ξ/lpl, y = R/lpl, χ = l/lpl .

Then, the system of equations (40), (41) can be
rewritten as follows

∂2ψ

∂y∂x
=
χ2

4

(
1− σ2

y2

)
ψ , (42)

∂2ψm

∂x2
= − 1

x

∂ψm

∂x
+
χ2

4x

(
y +

σ2

y
− 2µ

)
ψm . (43)

A joint solution of this system, which regularly on the
horizon, gives the wave function of con�guration for
the T-region in the state with a given mass m and a
charge q

Ψm,q = CJ0

(
lc

l2pl
T
√
hFT (T,m, q)

)
ei(ql/c~)ϕ , (44)

where R = cT and

h =
ξ

R
=

c2

2κm
ξ0FT (T,m, q) > 0 , (45)

FT (T,m, q) = −1 +
2κm

c3T
− κq2

c6T 2
> 0 . (46)

The functions h and T = R/c in the initial metric
(10) are arbitrary here. We note that the coe�cient N
does not enter the wave function Ψm,q(h, T, ϕ), which
determines the probability amplitude of the given
con�guration {h, T, ϕ;m, q}, that is, points {h, T, ϕ}
in the con�guration space for the given observables
m, q. The mass and charge spectra in this approach
are continuous. We note that formal quantization in
the R-region with a spacelike evolutionary coordinate
gives an analogous wave function.
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