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ABSTRACT. The basis of this work is the scheme
for describing the universe, called the ”cosmography”
entirely based on the cosmological principle. Within
the framework of such a scheme the parameters of any
model that satisfies the cosmological principle (the uni-
verse is homogeneous and isotropic on large scale), can
be expressed through cosmographic parameters. We
demonstrate a number of advantages of the approach
used before traditional methods
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1. Introduction

The fundamental characteristics used to describe the
evolution of the universe can be either kinematic if
they are extracted directly from the space-time met-
ric or dynamical if they depend on the properties of
the fields that fill the universe. The dynamic char-
acteristics are, of course, model dependent while the
kinematic characteristics are more universal. In addi-
tion, the latter are free from the uncertainties arising
when physical quantities such as, for example, energy
densities are measured. It is for this reason that the
kinematic characteristics are convenient for describing
the current expansion of the universe. The kinemat-
ics of cosmological expansion of a homogeneous and
isotropic universe has been called cosmography

In the early 60s of the last century, Alan Sandage
(Sandage, 1962) defined as the primary goal of the
cosmologists a search for two parameters, namely, the
Hubble parameter and the deceleration parameter.
However, an expansion with a constant acceleration is
not the only possible realization of the kinematics of
a nonstationary universe. As the universe evolves, the
relative content of the components that fill it is chang-
ing and, as a consequence, the dynamics of expansion
changes, hence the changes in acceleration. Thus, for a
more complete description of the kinematics of cosmo-
logical expansion, it is useful to consider an extended

set of parameters by including temporal derivatives of
a higher-order scale factor (Visser, 2005; Dunsby et al.,
2016; Bolotin et al., 2012):
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The inclusion of higher derivatives from the scale
factor, on one hand, reflects the continuous progress
of observational cosmology, and, on the other, it is
dictated by the need to describe the increasingly
complex effects used for obtaining precise information.

2. The basic cosmographic relations

Let us give a number of useful relationships needed
to describe the kinematics of cosmological expansion.
The deceleration parameter is related to the Hubble
parameter by the following relations:
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Derivatives dH
dz ,

d2H
dz2 ,

d3H
dz3 ,

d4H
dz4 and can be expressed

through the deceleration parameter and other cosmo-
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logical parameters as follows:
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Let Cn ≡ γn
a(n)

aHn , where a(n) ≡ dna
dtn is the n-th time

derivative of the scale factor, n ≥ 2 and γ2 = −1, γn =
1 for n > 2. Then C2 = q, C3 = j, C4 = s . . . For
the derivatives of the parameters with respect to the
redshift, the following relation takes place:

(1 + z)
dCn

dz
= − γn

γn+1
Cn+1 + Cn − nCn(1 + q). (4)

Using dz/dt = − (1 + z)H, the redshift derivatives
can be converted into time derivatives.

3. Cosmography of cardassian model

Dunajski and Gibbons (Dunajski and Gibbons,
2008) proposed an original approach for testing cosmo-
logical models that satisfy the cosmological principle.
Implementation of the method implies the following
sequence of steps:
1. The first Friedman equation is transformed to the

ODE for the scale factor. This is achieved by using the
conservation equation for each component included in
the model to find the dependence of the energy density
on the scale factor.
2. The resulting equation is differentiated (with re-

spect to cosmological time) as many times as the num-
ber of free parameters of the model.
3. The time derivatives of the scale factor are ex-

pressed through the cosmographic parameters.
4. By solving the obtained system of linear algebraic

equations, we express all free parameters of the model
through cosmographic parameters.
The procedure under consideration can be made

more universal and effective if the system of Friedmann
equations for the Hubble parameter H and its time
derivative Ḣ is considered as a starting one. By dif-
ferentiating the equation the required number of times
(this number is determined by the number of free pa-
rameters of the model), we obtain a system of equations
including higher time derivatives of the Hubble param-
eter Ḧ,

...

H,
....

H ... These derivatives are directly related
to the cosmological parameters by the relations (3).
We implement this procedure for the so-called Cardas-
sian model, whose evolution is described by a system

of equations (Freese and Lewis, 2002)

H2 = Aρ+Bρn. (5)

ρ̇+ 3Hρ = 0. (6)

Here ρ is the density of nonrelativistic matter. Differ-
entiating equation (5) with respect to the cosmological
time and using (6), we construct a system of coupled
equations

H2 = Aρm +Bρnm,

−2
3Ḣ = Aρm +Bnρnm,

2
9
Ḧ
H = Aρm + n2Bρnm.

(7)

Using the solutions of this system and the time deriva-
tives of the Hubble parameter (3), we find for constants
B and n:
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These relationships solve the problem of finding car-
dassian model parameters. A similar procedure can
be applied to any model that satisfies the cosmological
principle
Otherwise, we must treat the time-dependent solu-

tion for the density ρm. It can be represented in the
form

ρm
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=
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, ρc ≡
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. (9)

The current density ρm0 can be found by substitution
q → q0, H → H0.
It is interesting to note that the expression (7) for

the parameter n coincides exactly with the parameter s,
one of the so-called statefinder parameters {r, s} (Sahni
V. et al., 2003).
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The coincidence is obvious, since r ≡ j. The reason
for the coincidence can be explained as follows. In any
model with the scale factor a ∝ tα, there are the simple
relations for the cosmographic parameters q and j,

2q − 1 =
2− 3α

α
, j − 1 =

2− 3α

α2
. (11)

In cardassian model a ∝ t
2
3n , from which it follows

that s = n.

4. Summary: advantages of cosmographic
description

The proposed approach to finding the parameters
of cosmological models has many advantages. Let’s
briefly dwell on them.
1. Universality: the method is applicable to any

braid model that satisfies the cosmological principle.
The procedure can be generalized to the case of models
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with interaction between components (Bolotin et al.,
2016).
2. Reliability: all the obtained results are accurate,

since they follow from identical transformations.
3. The simplicity of the procedure.
4. Parameters of different models are expressed

through a universal set of cosmological parameters.
There is no need to introduce additional parameters.
5. The method provides an interesting possibility of

calculating the highest cosmological parameters from
the values of lower parameters known with a better
accuracy.
6. The method presents a simple test for analyzing

the compatibility of different models. The analysis
consists of two steps. In the first step, the model
parameters are expressed through cosmological param-
eters. The second step consists in finding the intervals
of cosmological parameter changes that can be realized
within the framework of the considered model. Since
the cosmological parameters are universal, only in the
case of a nonzero intersection of the obtained intervals,
the models are compatible.
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