FREQUENCY ANALYSIS OF BIMODAL CEPHEIDS

ABSTRACT. The Fourier analyses of pho- is taken as P_{1H} , and the secondary - as P_s ,

V.P. Bezdenezhnyi Astronomical Observatory, Odessa State University, T.G.Shevchenko Park, Odessa 270014 Ukraine

some of bimodal Cepheids (AS Cas, EW Sct, V tone. This identification holds true also for 367 Sct, TU Cas and CO Aur) are performed. 12 bimodal Cepheids from the above Berd-For stars with two known periods new identi- nikov's work, except CO Aur, at which this fications are carried out. EV Aql and S Sge ratio $P_1/P_0=0.8008$, that confirms a concluare attributed to bimodal Cepheids and added sion (Mantegazza, 1983) about its pulsations to them. More detailed subdivision of bimodal in the first and second overtones. The frequ-Cepheids is suggested on the ground of their encies f_2 and f_3 are linear combinations of two mode classification.

Key words: Stars: δ Sct, Cepheids, RR Lyrae, mode identifications

Frequency analyses of photoelectric Berd-

nikov's (1992a, 1992b, 1992c, 1992d, 1992e,

1992f) V-observations, received at the Mt. Maidanak Observatory, some of bimodal Cepheids (AS Cas, EW Sct, V 367 Sct, TU Cas and CO Aur) were performed. EV Aql and S Sge were attributed to bimodal Cepheids and added to them. The following results are obtained. AS Cas: This star is known as bimodal

Cepheid with the ratio of the secondary pe-

riod to the main one $P_1/P_0=0.7127$ (Berdnikov, 1992g). $P_0=3.02467$ $(f_0=0.3306145)$ and $P_1 = 2.155555$ ($f_1=0.4639187$). In the fourth edition of the General Catalogue of Variable Stars (Kholopov et al., hereafter GCVS, 1985a) close value of the main period $P_0=3.02125$ ($f_0=0.330989$) is given. Our analysis of 1988-1991 season's observations gives

and $f_3=1.1333678$ ($A_3=0.056$). The ratio of

the secondary period to the main one is close

to theoretical value 0.711, if the main period

bigger (by 0.0027) values of these frequencies: $f_0 = 0.3333485$ and $f_1 = 0.4666516$, and their ratio of 0.7143. The respective amplitudes are equal to: $A_0 = 0.253$ and $A_1 = 0.133$ mag. Besides, two more frequencies with smaller amplitudes are found: $f_2=0.797269$ ($A_2=0.073$)

toelectric Berdnikov's (1992) V-observations instead of the main tone and the first overmain frequencies f_0 and f_1 : $f_2 = f_1 + f_0$ and $f_3 = 2f_0 + f_1$.

S Sge: According to GCVS (1987) the

star is a spectral binary system (SB1) with an orbital period of 675 days. A main component is a Cepheid with a period of 8.382086 days (f=0.119302). Up to JD=2418000 the period was a little smaller: 8.381968 days (f=0.119304). From 146 observations we find the main frequency f=0.119293 (A=0.323) and three its harmonics 2f=0.238588 (A=0.070), 3f=0.357907(A=0.050), 4f=0.477182 (A=0.035). Besides, the frequency 1.006338 (A=0.020) is found. From multiple ratio we have identified it as $6f_s$ and the main frequency - as f_{1H} . It permits to attribute S Sge to the group of bimodal Cephe-

ids similar to AS Cas.

EW Sct: The star is known as a bimodal Cepheid (Cuypers, 1985) with the main period $P_0=5.8195$ ($f_0=0.171836$), the secondary period P_1 =4.0646 (f_1 =0.2460266) and their ratio $P_1/P_0=0.6984$. Our analysis has confirmed these results with a little smaller values of frequencies $f_0=0.1717212$ (A=0.176) and $f_1 = 0.2458112$ (A=0.120). Their ratio coincides with the above $f_0/f_1=0.6986$. A fact of interest is a detection at this star another three frequencies - the first harmonic of the main frequency $2f_0=0.3434215$ (=0.024) and linear combinations of two frequencies f_1

and f_0 : $f_1 + f_0 = 0.4175041$ (A=0.033) and (A=0.040); their ratio $f_{1H}/f_{2H} = 0.798$. Frequ $f_1 - f_0 = 0.0741082$ (A=0.024). Thus, this encies

90

star as well as AS Cas is multimodal Cepheid $2f_{1H}=1.1138610$ (A=0.036), $2f_e=1.0540236$ similar to RR Lyr or delta Sct stars. $(A=0.012), 2f_a=1.2644378 (A=0.011)$ and V367 Sct: According to GCVS (1987) this $f_{3H}=0.8450646$ (A=0.010) are found too.

main period $P_0=6.29307$ ($f_0=0.1589049$), the a multimodal one. period the first overtone $P_1=4.38466$ ($f_1=0.2280678$) its period is variable, and are resulted its values and their ratio $P_1/P_0 = 0.696744$. The star up to JD2423900 P=38.67 days (f=0.02586) is a member of the open cluster NGC and after the date P=38.767 days (f=0.02580). Our analysis has given close Our determinations have confirmed this fre-6649. values of the frequencies and their ratio: quency: $f_0=0.0258636$ (A=0.324). Three $f_0=0.1589009$ (A=0.174) and $f_1=0.2280611$ its harmonics are found too: $2f_0=0.0517686$

are found. TU Cas: It is known as a bimodal Cepheid. frequency f_s : f_{2H}/f_s =0.889. Hodson et al. (1979) give the following value for the ratio of the secondary period to the main one: $P_1/P_0=0.7097$, where $P_0=2.139298$ ($f_0=0.467443$) and $P_1=1.51830$

tude A_1 for 67 years has decreased from 0.4 V

period value.

 $(f_1=0.6586313)$. It is noted, that the ampli- At CO Aur in a role of the main frequency

to 0.25 V. Asymmetry of the light curve M-m and f_s is absent. There are first harmonics of

changes within the limits of 0.17-0.35 of the the frequencies f_e and f_q introduced by the

The frequency analysis has confirmed these results: $f_0 = 0.4674420$ $(A_0 = 0.289),$ $f_1=0.6586474$ ($A_1=0.109$) and $f_0/f_1=0.7097$. Besides, we have also found other five frequ-Probably, at EW Sct and V367 Sct the main encies: two harmonics of the main frequency $2f_0 = 0.9348839$ (A=0.099) and $3f_0 = 1.3996948$ frequency is f_s , instead of f_{1H} . Then, the se-(A=0.036), as well as three linear combinaticond frequency will be the harmonic of f_{1H} : ons of two main frequencies f_0 and f_1 : f_1 + $f_1=2f_{1H}$, and the ratio of frequencies f_0/f_1

 $f_0=1.1260941$ (A=0.072), $f_1-f_0=0.1912007$ (A=0.038) and $2f_0+f_1=1.5909257$ (A=0.047). CO Aur: This star is unique of all known bimodal Cepheids, which pulsate in the first and second overtones (Mantegazza, 1983): $P_{1H}=1.7841$ ($f_{1H}=0.5605066$), $P_{2H}=1.4255$ f_s , into two subgroups follows from Berdni-

close to the theoretical value of 0.8. Our analy-

 f_{1H} =0.5608409 (A=0.175) and f_{2H} =0.7025039

star is known as a bimodal Cepheid with the Thus, it is possible to name this Cepheid as of EV Aql: In GCVS (1985a) it is noted, that

 $(A=0.119), f_0/f_1=0.696747.$ Besides, similarly $(A=0.112), 3f_0=0.0775896$ (A=0.041) and to the case of EW Sct, the first harmonics $4f_0=0.1034960$ (A=0.022). However, the third of these frequencies $2f_0=0.3177947$ (A=0.028) (from amplitude) in a power spectrum is the and $2f_1=0.4536010$ (A=0.014), as well as frequency $f_1=0.0227485$ (A=0.047), the ratio their linear combinations $f_1 + f_0 = 0.3869774$ of which to the main frequency $f_1/f_0 = 0.880$. (A=0.018) and $f_1 - f_0=0.0691491$ (A=0.017), It is close to the theoretical value of the ratio - the frequency of the second overtone to the It can be summarized, that the most characteristic frequencies of bimodal Cepheids are f_{1H} and f_s , one of which (more frequently f_{1H}) acts the part of the main frequency.

> author earlier (Bezdenezhnyi, 1994a, 1994b) for RR Lyr and δ Sct stars. CO Aur is the most interesting case among multimodal Cepheids. However, at EV Aql the main frequency is f_s (f_{1H} is away), and the secondary one is f_{2H} .

> is f_{1H} , the secondary one is the frequency f_{2H} ,

of these stars equal respectively to 0.699 and 0.697 will be closer to the theoretical value $f_s/2f_1H=0.703$. This more detailed subdivision of bimodal Cepheids, pulsating in the frequencies f_{1H} and $(f_{2H}=0.7015082)$ and $P_{2H}/P_{1H}=0.799$, wich is kov's data (1992g) for 13 bimodal Cepheids

too. The average ratios of periods P_1/P_0 for sis has also picked out these main frequencies: two samples are equal to 0.703 and 0.711.

References

Berdnikov L.N.: 1992 a, As.Ap. Trans., 2, 1.

Berdnikov L.N.: 1992 b, As.Ap. Trans., 2, 31.

Berdnikov L.N.: 1992 c, As.Ap. Trans., 2, 43.

Berdnikov L.N.: 1992 d, As.Ap. Trans., **2**, 107. Berdnikov L.N.: 1992 e, As.Ap. Trans., **2**, 157.

Berdnikov L.N.: 1992 f, Letter in Astronomi-

cal journal, **18**, no.4, 325.

Bezdenezhnyi V.P.: 1994 a, Odessa Astron. Publ., 7, 55.

Bezdenezhnyi V.P.: 1994 b, Odessa Astron.

Publ., 7, 57.

Cuypers J.: 1985, *As.Ap.*, **145**, 283.

Hodson S.W., Stellingwerf R.F., Cox A.N.:

1979, ApJ, **229**, 642.

Kholopov P.N., Samus' N.N., Frolov M.S., Goranskij V.P., Gorynya N.A., Kireeva N.N., Kukarkina N.P., Kurochkin N.E.,

Medvedeva G.I., Perova N.B., Shugarov S.Yu.: 1985 a, General Catalogue of Variable Stars, V 1, Nauka, Moscow.

Kholopov P.N., Samus' N.N., Frolov M.S., Goranskij V.P., Gorynya N.A., Kazarovets E.V., Kireeva N.N., Kukarkina N.P., Kurochkin N.E., Medvedeva G.I., Perova N.B., Rastorguev A.S., Shugarov S.Yu.: 1985 b, General Catalogue of Variable Stars, V 2, Nauka, Moscow.

Kholopov P.N., Samus' N.N., Frolov M.S., Goranskij V.P., Gorynya N.A., Karitskaya E.A., Kazarovets E.V., Kireeva N.N., Kukarkina N.P., Kurochkin N.E., Medvedeva G.I., Pastukhova E.N., Perova N.B., Rastorguev A.S., Shugarov S.Yu.: 1987, General Catalogue of Variable Stars, V 3, Nauka, Moscow.

Mantegazza L.: 1983, As.Ap., 118, 321.