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POLYTHROPIC MODEL OF THE COMPONENT OF CLOSE
BINARY SYSTEM
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ABSTRACT. In the present work we tried to
resolve the problem about the detailed interior
structure of the non-single star which is the
component of close binary system. We have
consider the case of self-gravitation potential
of the gaseous sphere, which is influenced by
the forces connected with rotation and tidal
deformation from the companion.

Considered models appear to be remarkably
centrally condensed when compared with cor-
responding models of the non-rotating single
stars. This circumstance can lead to some evo-
lutionary changes in the close binary systems,
where one or two components
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Introduction

For a long time, so-called Roche lobe mo-
del was used for description of the centrally
condensed synchronously rotating components
of the close binary systems. Accordingly to
such a model, each component is presented by
the point mass surrounded by the diluted shell
with negligibly small density. Within this mo-
del one can obtain an exact expression for sur-
face levels of a binary star.

In the present work we tried to resolve the
problem about the detailed interior structure
of the non-single star which is the component
of close binary system . For this aim we used
self consistent field method (SCF), first emplo-
yed by Ostriker et al., (1968) for investigation
of the interior structure of the rotating stars
(Ostriker and Mark, 1968).

The stellar structure depends upon various
parameters. To simplify the problem, we ado-
pted the following assumptions:

1) secondary component is a point mass ha-
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Figure 1: Graphical representation of the considered
model

ving the corresponding gravitational potential;

2) angular rotational velocity of the primary
equals to its orbital velocity (i.e., rotation and
orbital movement are synchronous);

3) density distribution in primary is given by
the barotropic equation;

4) the influence of magnetic fields and exter-
nal forces is negligible.

Masses of primary and secondary compo-
nents are M, and M,, the distance between the
centres of mass of the components is d (fig.1),
angular velocity of rotation is w. The begin-
ning of co-ordinate system is set in the centre
of mass of primary component, z-axis is direc-
ted towards the centre of mass of the secondary
and z-axis is parallel to § vector (see Fig.1).
We can write the system of equations:

1
;VP = v(Uvself +Upor + Usd) =VB

V?B = —4rnGp
P=P(p)

(1)
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where Uy y is potential of self-gravitation of
primary, U, - centrifugal potential, Uyq - gra-
vitation potential of the secondary component,
B - total potential, the rest definitions have
usual meaning.

In case the initial distribution of the density
is set, then self-gravitational potential Use; ()
will be the sum of two values: potential for-
med by the mass confined within the sphere
of radius r and gravity potential of the mass
which is situated between the surface of the
considered sphere and outher boundary of the
configuration.

M
Uptf = — G/|f—f"|1dm’—
0
M
- G/|f—f’|1dm’ 2)
M
dm' = pdV’ (3)

where M,-mass inside the sphere of radius r,
dV-elementary volume.

Obviously, the first integral corresponds to
the case when 7 > 7', and second one is valid
for r < r'. Because of the solid-state character
of rotation, the centrifugal potential has the
following form:

1

5”2(@ - Icm)Q + yQ) (4)

where z., - distance to the centre of mass of
the system is given by:

Urot =

d- M,
Tem = ———— )
My A+ My (5)
Gravitational potential of the second compo-
nent is:

G- M
Uy = — 2 (6)

\/(d—:c)2+y?+z?

Having integrated the equilibrium equation

%VP _vB (7)

we get:

H =B - B, H:/d—P (8)
P

where H -enthalpy; B, - surface potential. In
case the state equation is given, one can obta-
ine the following relation:

p=p(H) 9)

Relations (1)-(9) allow to calculate new den-
sity distribution. If calculated pyeq differs from
Pold greater than on certain value, then ppey
is accepted as an initial approximation and
next iteration is performed to get the self-
consistence within the considered accuracy.

Computational scheme

It is reasonably to use undimensioned form of
equations with the basis G,R,p., where R is a
maximal radius of the star (beforehand fixed),
pc is a central density.

(10)

U=_—"—
Gp.R?

Let us divide the spherical volume with ra-
dius R onto spherical layers having the com-
mon centre and use pn;,(2) - the coefficient of
density decomposition on spherical functions
upon sphere of radius x [6].

2
//p/(x,ul¢/) x
0

x cos(m - ¢ )d¢  (11)

b () = / PR Ydp

Integrals can be easily calculated using
Gauss formula (w;,wy-weights, py,¢; - gaussian
abscissae, u= cos(f) ):

N N
prm (@) = Zwkpfﬁ(ﬂk) ZMP(% [1kPi) X
k=1 =1

x cos(m-¢;)  (12)
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Then:

Prm (T, 11y @) = pe Z Z Prm ()P,

n=0m=0

x cos(m - ¢;) (13)

Now, let us consider the self-gravitation po-
tential Userp. On the considered sphere it con-
sists of two components: potential () generated
by the mass from this spherical volume and
potential ® of the mass outside this sphere:
Userf = @ + ®. Using the well-known formulae
of the celestial mechanics (Duboshin, 1968),
one can get the total potential as a decompo-
sition on the spherical functions:

Qx, p, ¢) = Z Z Qunm (v 7n71P’r"7.’LL(ILL) X
n=0 m=0
x cos(m - ¢;)  (14)
(@, 1, ¢) = qu’nm )" PR (i) x

n=0 m=0

x cos(m - ¢;)  (15)
where @, (), Qnm(z) are:
Qnrn(x) = Cnrn/ In+2pnrn( )dxl (16)
0
1
By (1) = o / T (@) da' (17)
_ 2n+1 (n—m)!
Crm = 271'; (n+m)!
om=2 m=20
5p=1 m=123,
Finally:
Uself T, L, ¢ ZZUnm ><
n=0 m=0
x cos(m - ¢;) (18)
Upm(7) = @ (2) 2" + Qi (z)2™ "1 (19)

Calculation of the indefinite integrals (16),
(17) is similar to that of the indefinite inte-
gral of the function which is tabulated. Given
decompositions do not contain the sinusoidal
members, under the considered co-ordinate sy-
stem they appear to be zero. On each sphere
with radius z, the density and potential are
described as a triangle matrix:

Agpw 0 0 0

0 A 0 0
Ay 0 A 0

0 A3 0 As

On the next step we should calculate the en-
thalpy (in the same units as potentials):

H = Uself + Usd + Urot - Bs (20)

Constant B from (8),(20) is determined as
maximum of value B for y = 0, ¢ = 0,
x = 1 that corresponds to the directions to-
wards the secondary component. Simultaneo-
usly, we keep the condition that new configura-
tion should be situated inside the sphere x = 1.
Stellar surface is determined by the condition
H = 0. If we select

P=Kp*! (21)

as a state equation, then enthalpy and density
will be connected as following:

_ (Gp.R*H\"

 \K(n+1)

where n is a polytropic index.
Let us express K through the central density

and central value of the enthalpy H. and mass
through the undimensioned mass

(22)

K= G (23)
pe  (n+1)
M = pR°H" (24)
Undimensioned mass is:
11 2
M = / / / H"z*dxdpdg (25)
0 -10
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Figure 2: Equipotential surfaces. The inner one corre-
sponds to decreasing of the potential e times with re-
spect to its central value. M, /(My+ M>) =0.5 n=3
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Figure 3: The density profile. M;/(M; + M) = 0.5
n = 3. Dashed curve - single star, solid curve - com-
ponent of double system.

Let us define the undimensioned function f;.
It is Lane-Emden function in the scale where
the undimensione radius of the configuration is
R = 1. Therefore, the undimensioned function
fn can be used in searching for dimensioned
physical values:

H{(z)

fu(z) = T (26)

The values sought for (density, pressure, etc)
can be expressed using f;, function:

1 1
v/
0 -1

2
fratdzdude

0

(27)
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Figure 4: The dependence of p./p ratio upon mass

ratio
p= e} (28)
P=P.ft! (29)
_ nG—chlﬁ“ (%) ' (30)
Conclusion

We have investigated the problem about the
interior structure of the self-gravitating ga-
seous sphere, which is influenced by the for-
ces connected with rotation and tidal defor-
mation. Obtained solution generally depends
upon mass ratio M; /(M + M,) and polytrope
index n. It is clear, that Roche model for ho-
mogeneous incompressible ellipsoid and that
for the point mass are the asymptotic solutions
of the present problem (n=0 and n=3 respecti-
vely). Therefore, the configuration of the level
surfaces for n=0 should well fit to the level sur-
faces of homogeneous ellipsoid and for n = inf
to the level surfaces of point mass.

One of the most important results of the pre-
sent stydy consists in the following. As one can
see from fig.3, considered models are remarka-
bly centrally condensed when compared with
corresponding models of the non-rotating sin-
gle stars. This circumstance can lead to some
evolutionary changes in the close binary sy-
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stem, where one or two components fill in their
Roche lobes e.g., systems of W UMa).

Such stars can have shorter life-time depen-
ding upon the degree of additional central con-
densation and size of the volume inside the
stellar core where it takes place. Taking into
account that the rate of energy production in
pp or CNO cycle is proportional to p? and T"
(where n varies from 4 to 20), one can conclude
that even modest additional condensation of
core gas can accelerate the rate of stellar evo-
lution.
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